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1   Executive Summary 

Material flow analysis (MFA) in general, is a term used to summarize a wide range of 

approaches to describe material stocks and flows in systems defined in space and 

time. In MFA, the consideration of uncertainty should enable the use of all available 

information about the system, reflecting the purpose of the MFA and the data quality. 

The uncertainty of the basic data and the accuracy of the results are fundamental 

pieces of information for the evaluation process. As MFA concerns gathering, 

harmonizing and analysing data from various different sources with varying quality, 

limitations of data are unavoidable in material flow studies. The majority of data in 

MFA are empirical quantities with uncertainty arising from different sources: 
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If sufficient data are available, unknown flows including their uncertainties can be 

determined by mass balancing and error propagation. It is also important to convince 

data providers to include data uncertainty in their publications. In some situations, 

however, problems will occur with statistical methods, if only limited data are 

available. Therefore, different approaches to quantify and treat uncertain data are 

available: 
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Based on Laner et al. (2014) a step-wise iterative procedure for handling uncertainty 

in MFA is suggested. This schematic framework for considering uncertainty in MFA 

facilitates transparent uncertainty analysis in MFA and is suitable to accommodate 

any of the approaches presented here. Some studies may not warrant full uncertainty 

analysis because of different foci of the MFAs. Therefore, only parts of the scheme 

can be applied. In addition to providing a systematic way to consider uncertainty in 

MFA, the suggested procedure forms a basis for consistently communicating the 

approach used to consider uncertainty in a specific MFA study.  

In conclusion, it can be said that there are a handful of applicable approaches to 

consider data uncertainty in MFA. The employment of MFA software would facilitate 

the implementation of these approaches and reduce the additional workload because 

of automation to acceptable levels. However, such software support is not yet on the 

market (with the exemption of STAN1, which is limited to normally distributed values) 

and there is a strong necessity to fund such software development. Only then, MFA 

could enter into an era where reporting uncertainty ranges of stocks and flows is 

mandatory and state-of-the-art. This would help to judge or gauge the reliability of 

MFA studies and also allow comparative studies for different regions with respect to 

quality and quantity of data generation. 

  

                                           

1 STAN is a freeware, produced by TU Wien: www.stan2web.net  
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2   Introduction 

 

Global demand for minerals is growing rapidly, driven by rapid population growth, 

urbanisation and an increasingly diverse range of technical applications. Global 

material supply chains linking the extraction, transport and processing stages of raw 

materials have become increasingly complex and today involve multiple players and 

product components. An interactive platform that provides transparency about 

existing approaches and information gaps concerning global material flows is needed 

to understand these global supply chains; developing this capability is critical for 

maintaining competitiveness in the European economy.  

MinFuture brings together 16 international partners from across universities, public 

organisations and companies, to deliver new insight, strategic intelligence and a clear 

roadmap for enabling effective access to global material information. 

Data classification approaches typically focus on the evaluation of input data quality, 

but do not include mathematically rigorous procedures for propagating uncertainties 

through the model, whereas statistical approaches also propagate uncertainty 

through the material flow model to derive consequent uncertainty estimates for the 

model results. In MFA, the consideration of uncertainty should enable the use of all 

available information about the system, reflecting the purpose of the MFA and the 

data quality. Previously, ignoring uncertainty aspects in material flow studies has 

raised doubts about the reliability of MFA results (Laner et al. 2014). Though different 

ways of dealing with data uncertainties in MFA and related disciplines have been 

proposed (Hedbrant and Sörme 2001; Laner et al. 2014; Refsgaard et al. 2007; 

Weidema and Wesnæs 1996), a sound understanding of the nature of MFA data 

remains a subject for research.  

This report compiles the findings of the task 3 of work package 3. WP3 investigates 

the state-of-the-art of methods and approaches to analyse, evaluate, and design 

anthropogenic material systems with the focus on the temporal scale. Task 3.3 deals 

with model uncertainty analysis. Model uncertainty stems from different problem 

areas, e.g.: (1) incomplete understanding of the investigated system (real world), 

which may result in inadequate model outline/structure (e.g. missing material flows 

and/or processes), (2) aleatory and epistemic data uncertainty. This report will 

examine the nature of uncertainty that is behind mineral raw materials data. The 

goal is to provide a compilation of uncertainty approaches and recommendations for 

reporting data uncertainty. 

MFA models can be used to serve different purposes in material management, such 

as monitoring systems, forecasting changes, or evaluating alternative strategies. 

Depending on the purpose, MFAs need to include different components. These 

components are structured hierarchically (see Figure 1): the robustness of the 

components at higher levels depends on the robustness of the ones at lower levels. 

Combining these components adds new information and robustness and supports 

material strategies.  
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Figure 1: The hierarchical pyramid of MFA components. 

 

Systems represent the totality of the stocks and flows within boundaries 

defined in space and time at a chosen level of (dis-)aggregation. They 

include observed and unobserved stocks and flows. Adding a system 

definition to observed data adds information: Systems define the 

context of observed flows and they allow for calculation of unobserved 

flows using mass balance.  

 

Data form the foundation of MFAs. They represent observations of either 

stocks (at a given point in time) or flows (over a given time period).  

 

Models in this context are mathematical representations of material 

cycles. They reflect the system definition and the drivers of cycles such 

as population growth or technologies used. They are used to simulate 

MFA-based trends and developments  

Scenarios here are assumptions of plausible future cycles that are 

consistent with the mass balance principles and the assumed drivers. They can be 

used to make forecasts or to evaluate the effectiveness of alternative strategies.  

Uncertainty is inherent in all MFAs of historical or future cycles due to 

errors in system definitions and the data used. Approaches to 

uncertainty analysis aim at making uncertainties transparent and 

reducing them. They enable the modeller to make more robust 

assumptions and become aware of the model’s strengths and 

limitations.  
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Indicators stands for quantitative measures that aim to reflect the status 

of complex systems. They are used to analyse and compare 

performance of businesses, sectors or economies across countries and 

to determine policy priorities.  

 

Visualisations here are different maps of complex systems. They can 

inform decision making in industry and government, by visualizing 

current status and historical trends, and potential future developments 

under different conditions. Visualization tools are developed to support 

the recording (monitoring), exploration (analysis), and explanation 

(interpretation) of information. 

 

Strategy support here has two aspects; (1) Supporting political 

strategies for raw materials that aim at reaching different goals, such 

as those of the Strategic Implementation Plan (SIP) of the European 

Innovation Partnership on Raw Materials, the Circular Economy Action 

Plan or the SDG’s. (2) Supporting strategies for improving and 

expanding the use of MFA in academia, governments and industry.  

1. is addressed in exemplary ways through undertaking case studies 

on the material use in low-carbon technologies.  

2. is addressed through developing a roadmap 

 

 

As uncertainty is one component of the hierarchy, this report will serve as a guidance 

for requirements to survey and report uncertainties, and propose methods how to 

consider epistemic uncertainty in data generation and communication. Existing 

approaches for data classification and implementation of data uncertainty into 

modelling will be assessed to derive requirements for consideration and reporting of 

data uncertainty. Regardless of the MFA and uncertainty method used, MFAs need to 

include the components depicted in Figure 1. Hence, the uncertainty aspect will be 

discussed related to the different components of the ‘MinFuture Pyramid’. 
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3   Data Uncertainty in Material Flow 

Analysis 

3.1 Material Flow Analysis 

Material flow analysis (MFA), in general is a term used to summarize a wide range of 

approaches to describe material and energy stocks and flows in systems defined in 

space and time.  

MFA is helpful in identifying the accumulation and depletion of materials in natural 

and anthropogenic stocks, such as buildings, or soil and sediments. Without it, it is 

impossible to identify the shift of material stocks from natural reserves to 

anthropogenic accumulations. MFA, sometimes referred to as substance flow analysis 

(SFA) if a specific substance is the focus, is a systematic assessment of the state and 

changes of flows and stocks of materials within a system defined in space and time. 

MFA connects the sources, the pathways, and the intermediate and final sinks of a 

material. Because of the law of conservation of matter, the results of an MFA can be 

controlled by a simple mass balance comparing all inputs, stocks, and outputs of a 

process. It is this distinct characteristic of MFA that makes the method attractive as 

a decision-support tool in resource management, waste management, environmental 

management, and policy assessment (Brunner and Rechberger 2016).  

By balancing inputs and outputs, the flows of wastes and environmental loadings 

become visible and their sources can be identified (Brunner and Rechberger 2016). 

The MFA terms based on the Handbook of Material Flow Analysis: For Environmental, 

Resource, and Waste Engineers (Second Edition) (Brunner and Rechberger 2016) are 

described in Figure 2. 

MFA has experienced considerable development over the past three decades. A large 

and still growing community is using this method to analyse the anthropogenic 

metabolism (Rechberger et al. 2014). MFA is a method for modelling, understanding 

and optimizing material flow systems. MFAs incorporate databases of increasing size 

and quality and reveal more and more details about material flows into, within and 

out of given systems. As a consequence, MFAs are of increasing size and system 

structures are of increasing complexity (Schwab 2016). 
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Terms Descriptions 

Substance 
Substances are any (chemical) element or compound that is 

composed of uniform units (atoms, molecules).  

Good 

Goods are any economic entities of matter with a positive or 

negative economic value and are made up of one or several 

substances. 

Material Material serves as an umbrella term for both substances and goods. 

Process 
Processes are defined as the transformation, transport or storage 

of materials.  

Flow 
Flows are defined as a mass flow rate with the ratio of mass per 

time. 

Transfer 

coefficient 

Transfer coefficients describe the partitioning of materials in a 

process. 

Stock 

The total amount of materials stored in a process is designated as 

the stock of materials. Both the mass of the stock as well as the 

rate of change of the stock per unit time (accumulation or depletion 

of materials) are important parameters for describing a process. 

System 

The system is the actual object of an MFA investigation. A system 

is defined by a group of MFA elements, the interaction between 

these elements, and the boundaries between these and other 

elements in space and time. 

Figure 2: Terminology and main symbols of MFA based on Brunner and Rechberger 

(2016) (Allesch 2017). 
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3.2 Data Uncertainty  

A model can never perfectly represent a real system. Because of that, model 

predictions are always uncertain. Besides MFA concerns gathering, harmonizing, and 

analysing data about physical flows and stocks from different sources with varying 

qualities, data limitations are unavoidable in material flow studies (Laner et al. 2014). 

Although studies of material flow systems can provide information, they also depend 

on information and a lack of useful information can be a limiting factor. More than 

that, the results are typically inherently limited in terms of accuracy and, thus, in 

their reliability in subsequent decision-making processes. Clearly, if MFA is seen as a 

way of compiling data to create information about material stocks and flows and to 

aggregate this information to create knowledge about material flow systems, the 

quality of its fundamental components, data, is substantial (Schwab 2016).  

Almost all data used for MFA will be subject to a certain degree of uncertainty. 

Assessment of data reliability and crosschecking of information and estimates are of 

great importance, as all data will be more or less uncertain (Lassen et al. 2000). The 

reason is that MFAs are often based on cross-disciplinary, highly heterogenic data. 

Often the data are unstructured and can have different formats and qualities due to 

heterogeneous sources, such as official trade statistics, scientific literature, consumer 

behaviour studies, and expert estimates. In some cases, extensive statistical data, 

such as lab data on substance concentrations, might be available, but MFA modeler 

usually have to cope with isolated values (Schwab 2016).  

In many cases, MFA data are not based on empirically well-founded datasets, but on 

isolated values which are not always provided in consistent formats (Schwab 

2016).Therefore, the validity of MFAs depends on the quality and quantity of available 

data (Dzubur 2017). Data quality and data quantity are constitutive for 

environmental modelling, also in MFA, which is often based on cross-disciplinary data. 

Additionally, relevant data may be confidential, lost, highly aggregated, or outdated, 

or derived in indirect ways. The background of data is not always transparent because 

of missing meta-information. Besides the data can be inaccurate owing to 

measurement and collection errors or biased du to the interests of the data producers 

(Schwab 2016).  

Recognizing the shortcomings of MFA data in combination with the mentioned variety 

of sources and the various ways collected data are applied in the analysis process, 

the databases of studies are not always comprehensible for agents other than the 

producer, and the systematic evaluation of data quality is limited. All measured, 

estimated, or literature-based values should at least random deviations (Brunner and 

Rechberger 2016). Therefore, MFA should now enter into an era where reporting 

uncertainty ranges of stocks and flows is mandatory. This would help to judge or 

gauge the reliability of MFA studies and also allow comparative studies for different 

regions with respect to data quality. Such analysis of MFA data is a requirement for 

progress in MFA to produce reliable results (Rechberger et al. 2014).  

To develop a robust MFA, modelers usually need to have a good understanding about 

the reliability of a data source and are able to assign practical and useful estimates 

on the uncertainty range of the input data (Rechberger et al. 2014). Essentially, there 

is no collective understanding about what data or, more generally, information in 

MFA is and how it can be characterized (Schwab 2016). Based on the analysis of data 

uncertainty by Danius and Burström (2001) it is concluded that to use MFA as a tool 

for priority setting and follow-up is associated with considerable difficulties.  

The data availability generally decreased from the country to the regional level, and 

even further to the metropolitan areas. In particular, the regional-/urban-scale MFA 
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indicators have higher uncertainty owing to: (1) data being spread between several 

institutions deploying different collection protocols and uncertainty assessment 

methods; (2) confidential values; (3) MFA at urban level aggregates uncertainties 

from more sets of data; and (4) MFA at urban levels is more dependent on imputation 

methods (Patrício et al. 2015) 

Uncertain data may indicate a condition that could be detrimental to environment or 

public health. Either the data can be used despite the high uncertainty, with a risk 

for confusion and speculation. Or the data can be ignored, with a risk for also ignoring 

an important detrimental condition (Hedbrant and Sörme 2001). However, MFA is 

still a useful tool for screening in order to identify areas for further and more detailed 

investigation (Danius and Burström 2001). 
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4    Nature of Uncertainty 

Given that material flow data originate from different sources and vary in quality, 

MFA is naturally confronted with uncertainty (Laner et al. 2015a). Collecting data is 

an important part of each modelling procedure. If only the point estimators of 

observations are considered, known constraints such as the conservation laws of 

mass and energy are frequently violated (Cencic 2018).  

4.1 Aleatory variability and epistemic uncertainty 

Uncertainty in science may relate to context definition, model structure, model 

inputs, parameter values, and others (Walker et al. 2003). As a general concept, it 

is proposed to distinguish epistemic uncertainty and aleatory (also stochastic, or 

natural) variability (Schwab 2016; Morgan et al. 1992). Therefore, data uncertainties 

can be grouped into these two categories (Brunner and Rechberger 2016) (see Figure 

3). 

 

Figure 3: Aleatory and epistemic Uncertainty (Kammerer 2013) 

 

Aleatory variability 

The word aleatory derives from the Latin alea, which means the rolling 

of dice. Thus, an aleatoric uncertainty is one that is presumed to be 

the intrinsic randomness of a phenomenon (Der Kiureghian and 

Ditlevsen 2009). 
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Aleatory uncertainty is often also referred to as variability. It is caused by 

randomness and cannot be reduced by knowledge (Dzubur 2017) and arises due 

to inherent variability, natural stochasticity, environmental or structural variation 

across space or through time, manufacturing or genetic heterogeneity among 

components or individuals, and a variety of others sources of randomness. 

Aleatory variability cannot be reduced but only better understood (Brunner and 

Rechberger 2016). Uncertainties are categorized as aleatory if the modeller does 

not foresee the possibility of reducing them (Der Kiureghian and Ditlevsen 2009).  

Aleatory uncertainty can be appropriately handled with concepts used for describing 

observed frequencies of random events (frequentist approach) while epistemic 

uncertainty requires concepts for dealing with the degree of belief in data or 

reasonable assumptions reflecting available data. These two types of uncertainty are 

typically confused in MFA, making it difficult to distinguish what is known from what 

is assumed. (Dzubur 2017).  

Epistemic uncertainty 

The word epistemic derives from the Greek  (episteme), 

which means knowledge. Thus, an epistemic uncertainty is one that 

is presumed as being caused by lack of knowledge (or data) (Der 

Kiureghian and Ditlevsen 2009). 

Epistemic uncertainty is caused by a lack of knowledge and can be minimized 

through further examination (Dzubur 2017). Uncertainties are characterised as 

epistemic, if the modeller sees a possibility to reduce them by gathering more data 

or by refining models (Der Kiureghian and Ditlevsen 2009). Epistemic uncertainty 

arises due to insufficient knowledge about the world, which includes small sample 

sizes, detection limits, imperfections in scientific understanding, etc. Epistemic 

uncertainty is understood as uncertainty due to limited or imperfect knowledge, 

which could be reduced by further investigation (Schwab 2016). 

Table 1: Aleatory variability and epistemic uncertainty (Kammerer 2013) 

Aleatory Epistemic 

Natural variability Modelling or knowledge uncertainty 

Not reducible Reducible with more information 

Addressed through integration over 

parameter distributing 

Addressed through use of a logic 

tree 

 

While epistemic uncertainty relates to knowledge shortcomings, aleatory uncertainty 

refers to the impossibility of reducing certain entities (or objects, phenomena) to 

simple empirical quantities such as one precise value. In that sense, variability is an 

intrinsic property of any entity that has more than one realization. It is thus also an 

intrinsic part of a complete piece of information. Not knowing about the extent of 

variability, in return, is a knowledge shortcoming and thus epistemic uncertainty 

(Schwab 2016). The distinction between aleatory and epistemic uncertainties is 

determined by modelling choices. The distinction is useful for identifying sources of 

uncertainty that can be reduced in near-term, i.e., without waiting for major 

advances to occur in scientific knowledge, and in developing sound risk and reliability 
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models. The distinction is also important from the viewpoint of transparency in 

decision-making, since it then becomes clear as to which reducible uncertainties have 

been left unreduced by our decisions (Der Kiureghian and Ditlevsen 2009). 

4.2 Causes of uncertainty  

As MFA concerns gathering, harmonizing and analysing data about physical stocks 

and flows from various sources with varying quality, limitations of data are 

unavoidable in material flow studies (Chen and Graedel 2012; Dzubur 2017). The 

majority of data in MFA are empirical quantities with uncertainty arising from different 

sources (Laner et al. 2014). Based on Dzubur (2017) the causes of uncertainty can 

be assigned as follows: 

 

a) non-deterministic behaviour of a system 

b) uncertainty of model parameter values 

c) uncertainty of model structure 

d) uncertainty due to external influence factors  

e) uncertainty due to numerical solutions of model equations 

 

Non-deterministic behaviour of a system 

Non-deterministic behaviour of a system is usually due to chaotic behaviour rather 

than due to true randomness at a macroscopic level. Chaotic behaviour denotes 

deterministic systems, which are very sensitive to initial conditions. As the initial 

state of a system can never be reproduced in full, this leads to observed non-

deterministic behaviour. Besides, there are also other causes of non-deterministic 

behaviour which can be well described by random model elements, such as 

aggregation errors. As chaotic behaviour, this is due to epistemic uncertainty as 

there is a lack of spatial resolution. Another reason of non-deterministic behaviour 

can be influence factors, which cannot be measured and therefore, cannot be 

considered in a model.  

Uncertainty of model parameter values 

The usage of model parameters can specify the essential structure of dependence 

in the model. Still, there might remain unknown model variables that must be 

adapted empirically. Parameter estimation should not only provide the best 

estimates of model parameters, but also of their uncertainty, which can be 

propagated in the results.  
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Uncertainty of model structure 

Structural model errors may consist of an inadequate selection of model variables 

and processes, an inadequate selection of process formulations, or an inadequate 

formulation of spatial and temporal resolution of a model. Such errors are not easily 

quantifiable. 

 

Uncertainty due to external influence factors 

External influence factors describe the influence of the environment on the 

considered system. 

Uncertainty due to numerical solutions of model equations 

Usually, model equations must be solved numerically. The accuracy of these 

numerical solutions is usually much higher than uncertainty due to other sources, 

and can often be neglected. An exception is the usage of Monte Carlo simulation 

techniques to calculate probability distributions, the use of which can lead to 

significant errors in the results if the number of runs is too low. Other potential 

causes of uncertainty can be the use of poor numerical techniques. 

 

4.3 Sources of uncertainty  

An uncertainty type of central interest in this work is data uncertainty. Ideally, data 

uncertainty can be understood as a problem of variability and can, if sufficiently large 

datasets are given, be quantified by statistical methods. These possibilities may, 

however, be limited as given data may not always be sufficient for proper application 

of statistical methods. Moreover, data uncertainty is not always a unidimensional 

phenomenon but may also, in addition to variability, include elements of epistemic 

uncertainty such as disagreement, linguistic imprecision, systematic error or 

subjective judgement, and others (Morgan et al. 1992) (Schwab 2016).  

The majority of data in MFA are empirical quantities with uncertainty arising from 

different sources which are summarized by Laner et al. (2014). 
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Table 2: Sources of uncertainty in material flow data (Laner et al. 2014) 

Sources of 
uncertainty 

Description Examples 

Statistical variation 
Statistical variation arises from 

random error in direct measurements 
of the quantity of interest 

Measurements of copper 

(Cu) content in the same 
type of cell phone 

Variability Quantities are variable in space and 
time, which causes values to fluctuate 

Cu content in cell phones 
from the period 2000–2010 

Inherent 
randomness and 
unpredictability 

Uncertainty is irreducible in principle 
because of indeterminacy (i.e., 
practical unpredictability) 

Cu recovery efficiency in 
future treatment of waste 
cell phones 

Subjective 
judgment 

Estimating the difference between the 
quantity being measured and the 
quantity of interest resulting from 
systematic error is essentially based 

on subjective judgment. Systematic 
error derives from sources of 
uncertainty, which are unknown 
(otherwise they should be adjusted 
for), and is therefore irreducible 

Using the Cu content in one 
type of cell phone to 
estimate the Cu content in 
another type 

Disagreement 
There is no consensus among 
scientists (opposing views), typically 
because of a lack of data 

Long-term mobilization of Cu 
from landfilled waste 

Linguistic 
imprecision 

Imprecise language causes 
uncertainty about a quantity 

“Nonferrous metal (mainly 
Cu) content in a cell phone” 
is an ill-specified quantity 

Approximation 

Because the model is only a simplified 
version of the real system, model 

parameters approximate the real 
properties of the system 

Linear relationship (transfer 
coefficient) between Cu 
content of a cell phone and 

Cu recovered during 
mechanical treatment is an 

oversimplified assumption. 

 

4.4 Types of uncertainty 

Most uncertainty studies quantify only one type of uncertainty, i.e., uncertainty due 

to input data (parameter uncertainty). However, outcomes can also be uncertain due 

to normative choices (scenario uncertainty) and the mathematical models involved 

(model uncertainty) (Huijbregts et al. 2003). Huijbregts et al. (2003) evaluate 

uncertainty in environmental LCA studies and the following description is based on 

that. Although it is about LCA many aspects related to the types of uncertainty can 

be shifted to MFA.  

Parameter Uncertainty  

Parameter uncertainty reflects our incomplete knowledge about the true value of a 

parameter, e.g., due to imprecise measurements, (expert) estimations, and 
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assumptions. Monte Carlo simulation is a technique to quantify parameter 

uncertainty. It propagates known parameter uncertainties into an uncertainty 

distribution of the output variable.  

Scenario Uncertainty 

Normative choices are unavoidable in LCA and MFA studies. These normative choices 

lead to uncertainty because different choices may generate different outcomes. 

Quantification of this scenario uncertainty involves two steps.  

First, an overview has to be made of the normative choices involved in the LCA study. 

Second, a procedure has to be developed to quantify the consequences of normative 

choices in terms of output uncertainty. Figure 4 provides an overview of the scenario 

uncertainties generally encountered in LCA studies. 

 Important normative choices in the inventory analysis are the choice of the 

procedure to allocate environmental impacts for multi-output processes, 

multi-waste processes, and open-loop recycling, and the choice of how to 

assess future situations, such as the disposal of long-life products.  

 In the impact assessment, the choice of a particular environmental endpoint 

should be made explicit. For instance, inclusion or exclusion of “below 

threshold” impact changes may result in considerably different 

characterization factors.  

 The choice for a particular time horizon should also be considered. For 

instance, the toxic impact of metals may differ more than six orders of 

magnitude depending on the time horizon chosen.  

 Finally, a potentially important choice is the decision whether to include 

potential impacts linked to pollutants exported from the emitting region. 

Exposure that occurs outside this region may fully dominate the potential 

impacts, obscuring those in the emitting region itself.  

 

 

Figure 4: List of Scenario and Model Uncertainties in Environmental Life-Cycle 

Assessment (Huijbregts et al. 2003) 
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Model Uncertainty 

Many aspects of the real world cannot be modelled within the present LCA structure. 

Assumptions and simplifications are made that lead to uncertainty regarding the 

validity of the model predictions for the real world situation. Quantification of this 

model uncertainty is comparable with that of scenario uncertainty. 

First, an overview has to be made of the relevant assumptions made. Second, a 

procedure has to be developed to quantify the consequences of model choices in 

terms of output uncertainty. Figure 4 provides an overview of the model uncertainties 

generally encountered in LCA studies.  

 Important model uncertainties are that spatial and temporal characteristics 

are generally lost by the aggregation of emissions in the inventory analysis.  

 Characterization factors are computed with the help of simplified 

environmental models that suffer from model uncertainties. For instance, the 

sensitivity of the receiving environment is not taken into account in the 

computation of characterization factors for pollutants causing aquatic 

eutrophication.  

 Finally, the lack of characterization factors for toxicologically important 

substances, such as PCBs, or important sum emissions, such as metals, may 

cause substantial model uncertainty in LCA outcomes.  
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5   Dealing with Data Uncertainty: 

Existing approaches 

New challenges emerge when the qualitative discussions of political science meet the 

quantitative approach of environmental science. There seem today to be little support 

for how few, subjectively estimated data with large uncertainties should be taken into 

account. Still, there is a need to consider and calculate results from uncertain data. 

(Hedbrant and Sörme 2001). Due to differences in data quality, it is not always clear 

how reliable MFA results are (Schwab 2016). Often, even the basic uncertainty is 

unknown. If samples of measurement results are available, it is possible to calculate 

the basic uncertainty of the data, but most often only one number is available 

(Weidema and Wesnæs 1996).  

Measured data always contain uncertainties! Because of that it is possible to 

encounter contradictions in data when only looking at the mean values. Imagine a 

process without a stock with one input and one output flow, both measured. Because 

of random measurement errors their mean values are likely to be not exactly the 

same, but should be. If those measured values are assumed to be normally 

distributed given by a mean value and a standard deviation the method of data 

reconciliation can be applied to adjust the data in order to resolve the contradiction. 

This is prerequisite for calculating the values of unknown variables and their 

corresponding uncertainties (Cencic and Rechberger 2008). 

Statistics is the way to use several inaccurate data samples to get as decent as 

possible knowledge of one entity. If there is enough data available it is possible to 

use statistics (median, standard deviation). In some situations, however, problems 

will occur with statistical methods (Hedbrant and Sörme 2001).  

 If there are only one or few data available 

 If data rely on subjective estimations from interview persons 

 If available data are not independent 

 If data are uncertain 

 

Therefore, different approaches to treat uncertain data have been developed. 

Methods to deal with uncertainty in MFA range from qualitative discussions to 

sophisticated statistical approaches. This chapter is mainly based on Dzubur (2017) 

and Laner et al. (2014) showing methods, which deal with uncertainty in MFA. The 

majority of methods can be classified into four groups: (1) Data classification 

methods, (2) Uncertainty analysis approaches, (3) Sensitivity analysis approaches 

and (4) Comparisons of model structures 

5.1 Approaches based on Data classification  

In approaches based on data classification, the focus lies on formal concepts to 

characterize data quality and uncertainty, typically in combination with simple 

mathematical methods (Dzubur 2017). 

 

1) Asymmetric uncertainty intervals by Hedbrant and Sörme (2001) 

2) Symmetric intervals by Lassen and Hansen (2000) 

3) PEDIGREE Matrix by Weidma and Wesnaes (1996) 

4) Information defects by Schwab et al. (2016). 
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5.1.1 Asymmetric intervals 

Asymmetric intervals are calculated by assigning uncertainty factors to each 

uncertainty level. Depending on the data source (e.g., recognized authorities vs. 

informal estimate) and the specificity (e.g., data related to the specific region vs. 

data on a general level), MFA input data are categorized into groups with predefined 

uncertainty levels Laner et al. (2014). 

Table 3: Asymmetric intervals (Laner et al. 2014) 

Data uncertainty 

characterization 

Mathematical 

treatment 

Model output 

evaluation 

Typical 

application 

Data source- and 

specificity-based 

concept to derive 

asymmetric 

intervals 

The uncertainty 

intervals have qualities 

similar to the standard 

deviation of normal 

distributions 

Results are 

expressed as 

asymmetric 

intervals defined by 

multiplication and 

division with an 

uncertainty factor 

Descriptive 

MFA 

 

Asymmetric intervals by Hedbrant and Sörme (2001) 

An approach to harmonize societal data where uncertainty intervals are determined 

is given by Hedbrant and Sörme (2001). Traditionally an uncertainty interval may be 

written as X ± Y. At decently low uncertainties, for example 100 ± 30 kg, this works 

fine. However, the larger the uncertainty, the less natural would it be to express it in 

terms of symmetrical intervals. Small uncertainties have symmetrical intervals 

(‘numbers’). Large uncertainties have asymmetrical intervals (‘magnitudes’). For 

large uncertainties people seem to think in terms of magnitudes. Therefore, Hedbrant 

and Sörme (2001) presented a method based on uncertainty intervals to consider 

the uncertainties (see Table 4). The intervals are derived through multiplication and 

division of the data with the respective uncertainty factor (Laner et al. 2014).  

Table 4: Asymmetric intervals (Hedbrant and Sörme 2001): Levels, factors and 

interval sizes of uncertain data 

Level Factor Interval 

1 1.10 */1.10 

2 1.33 */1.33 

3 2 */2 

4 4 */4 

5 10 */10 
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The uncertainty levels of different sources of information are defined based on the 

“source of information” (see Table 5). Especially, when only few sources of specific 

official statistics are available different sources need to be taken into account.  

Table 5: Uncertainty levels with sources of information and with examples, used in 

the Stockholm study 

Level Source of information Example 

1 

(interval 

∗/1.1) 

Official statistics on local level. 

Number of households, cars, Cr 

content in steel for a specific 

application apartments, small 

houses. 

2 

(interval 

∗/1.33) 

Information from authorities/ 

construction/production. 

Official statistics on (local), 

regional and national levels. 

Information from authorities/ 

construction/ production. 

Percentage of leather shoes among 

shoes. Amount of Pb and Cu in 

power cables. Cr content in leather 

Thickness of Ni and Cr layer on 

plating. Paint per area. Share of 

Volvo cars among all cars. 

3 3 

(interval 

∗/2) 

Official statistics on national 

level downscaled to local level. 

Information on request from 

authorities/ construction/ 

production. 

Annual use of stainless steel on 

roofs and fronts.  

4 

(interval 

∗/4) 

Information on request from 

authorities/ construction/ 

production. 

Weight of catalytic converters 

5 

(interval 

∗/10) 

 
Cd content in Zn in a type of good, 

e.g. galvanised goods. 

 

However, though data were characterized by asymmetric uncertainty intervals, 

Hedbrant and Sörme (2001) assumed that the uncertainty interval had similar 

qualities as the standard deviation of a normal distribution (upper uncertainty limit 

is used to define the standard deviation) to perform calculations in the material flow 

model (Laner et al. 2014).  

The mathematical strategy should be simple, to avoid giving an impression of ‘false 

scientific quality’. Advanced mathematics or the use of advanced mathematical tools 

may give a ‘quality bias’ that can influence policy formulation. In reality, calculations 

based on few uncertain data would be a weak foundation for decisions, especially if 

several uncertain data are used in one calculation. The uncertainty intervals in the 

results should indicate the decision power, not the use of our methods itself. The final 

evaluation of the decision power in data has to be made in each individual discussion 

of the issue where the data is used. Different studies used this method to consider 

uncertainties within MFA. (Danius and Burström 2001; Cooper and Carliell-Marquet 

2013; Egle et al. 2014; Klinglmair et al. 2015).  
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5.1.2 Symmetric intervals 

Symmetric intervals use probability distributions to represent uncertain values and 

indicate the uncertainty. For example, the 5% percentile would represent the lower 

and the 95% percentile the upper value of an interval (=90 % confidence interval).  

Table 6: Symmetric Interval (Laner et al. 2014) 

Data uncertainty 

characterization 

Mathematical 

treatment 

Model output 

evaluation 

Typical 

application 

Intervals are 

defined to contain 

the true value with 

a certain level of 

confidence 

Interval arithmetic 

(addition of lower 

and upper bounds) 

Uncertainty 

intervals of results 

have higher 

confidence levels 

than inputs 

Descriptive 

MFA 

 

Symmetric intervals by Lassen et al. (2000) 

Lassen et al. (2000) use probability distributions to represent uncertain values and 

indicate the uncertainty with symmetric intervals. They recommend, that uncertainty 

should be specified for all figures using probability distributions and indicate the 

uncertainty by intervals; e.g. 200-250 tonnes. For most figures, there will be a 'true 

value'; e.g. the actual consumption of the substance within the reference year. But 

the researcher conducting the SFA does not know this value. When a number of 

monitoring data exist, it may be possible to use standard statistics to estimate a 

confidence interval assuming the data are normal distributed, but for most figures in 

the analysis the uncertainty has to be determined by 'expert judgements'. 

In order for the intervals not to be unreasonably wide, it is recommended to use 

intervals representing a 90% (or 80%) certainty level. In other words: the figures 

are represented by the interval within which the author estimates the 'true value' 

with 90% certainty can be found. In addition it can be assumed that the probability 

is normal distributed with the mean value as the most probable and a symmetric 

distribution around the mean. This means that the width of the interval directly 

indicates the uncertainty on the results. It makes no sense to state: 'The consumption 

is roughly estimated at 100-110 tonnes'. A rough estimate will inherently be quite 

uncertain and if the estimate is rough it will be more correct to state: 'The 

consumption is roughly estimated at 20-200 tonnes'.   
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Figure 5: Symmetric intervals based on Cencic (2016) (e.g.: the 2.5% percentile 

would represent the lower and the 97.5% percentile the upper value of an interval) 

 

 

5.1.3 Data quality – Data quality indicators 

Data quality is the specific characteristic of data as expressed through information 

about the data (metadata), such as information on its uncertainty (spread and 

pattern of distribution), its reliability (depending on the methods used for 

measurements, calculations, assumptions and quality control of data), its 

completeness (number of data collection points and periods and their 

representativeness of the total population), its age (year of the original 

measurement), the geographical area for which the data is representative and the 

process technology or technological level for which the data is representative 

(Weidema and Wesnæs 1996).  

Data quality indicators were often used to describe different aspects of data quality 

in LCA (Lloyd and Ries 2007). They may be directly transferred into probability 

distributions or used to identify possible sources of uncertainty and improve data 

quality management (Laner et al. 2014). 

 

  



 

MFA – Uncertainty - Deliverable 3.3 28 

Table 7: Data quality indicators (Laner et al. 2014) 

 

Data uncertainty 

characterization 

Mathematical 

treatment 

Model output 

evaluation 

Typical 

application 

Basic uncertainty 

and imperfect data 

quality are 

evaluated to 

calculate data 

uncertainty 

All uncertainties are 

given as coefficients 

of variation 

(standard 

deviation/mean 

value) 

Confidence 

intervals cannot be 

directly 

constructed from 

coefficients of 

variation 

No explicit 

applications in 

MFA 

 

PEDIGREE Matrix (Weidema and Wesnæs 1996) 

Formal data quality management starts with the definition of data quality goals and 

a data collection strategy as part of the definition of the goal and scope. The quality 

of the individual data may subsequently be related to the data quality goals through 

a number of data quality indicators which specify the data quality. Weidema and 

Wesnæs (1996) introduce the use of a ‘pedigree matrix’ giving a semi-quantitative 

indication of: 

 Reliability of the data (independent of the data quality goals) including an 

assessment of the sampling methods and verification procedures. 

 Completeness of the data (independent of the data quality goals), including 

the statistical representativeness of the data, number of measurements in 

the sample and time periods for data collection.  

 Temporal, geographical and further technological correlations (between the 

data and the data quality goals). 

These data quality indicators may subsequently be used 

 to revise the data collection strategy to improve the quality of the collected 

data. 

 in combination with uncertainty estimates to give a better assessment of the 

reliability of the result. 

 

Weidema and Wesnæs (1996) suggest five independent data quality indicators 

(Pedigree Matrix) which are necessary and sufficient to describe those aspects of data 

quality which influence the reliability of the result. The matrix is used to communicate 

data limitations, to assess data quality and associated uncertainty (see Table 8).  
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Table 8: Pedigree matrix with 5 data quality indicators 

 
I
n

d
ic

a
to

r
 

S
c
o

r
e
 

1 2 3 4 5 

R
e
li

a
b

il
it

y
 

Verified data 

based on 
measure-

ment 

Verified data 
partly based 
on 

assumptions 
or non-verified 
data based on 

measurement
s 

Non-verified 

data partly 
based on 

assumptions 

Qualified 

estimate (e.g. 
by industrial 

expert) 

Non-qualified 
estimate 

C
o

m
p

le
te

n
e
s
s
 

Representati
ve data from 
a sufficient 
sample of 

sites over an 
adequate 
period to 
even out 
normal 

fluctuations 

Representativ
e data from a 
smaller 
number of 
sites but for 
adequate 

periods 

Representati
ve data from 
an adequate 
number of 
sites but 
from shorter 

periods 

Representative 
data but from a 
smaller number 
of sites and 

shorter periods 
or incomplete 
data from an 
adequate 
number of sites 

and periods 

Representativ-
eness 
unknown or 
incomplete 

data from a 
smaller 
number of 
sites and/or 
from shorter 

periods 

T
e
m

p
o

r
a
l 

c
o

r
r
e
la

ti
o

n
 

Less than 
three years 
of difference 
to year of 
study 

Less than six 
years 
difference 

Less than 10 
years 
difference 

Less than 15 

years difference 

Age of data 
unknown or 
more than 15 
years of 
difference 

G
e
o

g
r
a
p

h
ic

a
l 

c
o

r
r
e
la

ti
o

n
 

Data from 

area under 

study 

Average data 
from larger 
area in which 
the area under 

study is 
included 

Data from 
area with 

similar 

production 
conditions 

Data from area 
with slightly 

similar 

production 
conditions 

Data from 
unknown area 
or area with 
very different 

production 
conditions 

F
u

r
th

e
r
 

te
c
h

n
o

lo
g

ic
a
l 

c
o

r
r
e
la

ti
o

n
 

Data from 
enterprises, 

processes 
and 
materials 
under study 

Data from 
processes and 
materials 
under study 
but from 
different 

enterprises 

Data from 
processes 
and 

materials 
under study 
but from 
different 
technology 

Data on related 
processes or 
materials but 
same 
technology 

Data on 
related 

processes or 
materials but 
different 
technology 

 

The pedigree matrix, in particular, represents a formalized procedure to communicate 

data limitations and create a basis for improving the data collection strategy of LCA 

studies. Because harmonizing data from different sources in LCIs is similar to the 

challenge of data characterization in MFA, the pedigree matrix may also be useful to 

express the additional uncertainty resulting from the data limitations in MFA studies. 
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5.1.4 Combination 

To characterize uncertainty of MFA input data in an appropriate way, often the 

combination of different approaches is required. 

Characterizing of uncertainty with data quality and asymmetric intervals 

(Laner et al. 2015b)  

This method builds on the data quality assessment scheme proposed by Weidema 

and Wesnæs (1996), and the assessment of material flow data uncertainty using data 

classification presented by Hedbrant and Sörme (2001). The so-called pedigree 

matrix consists of five independent data quality indicators (reliability, completeness, 

temporal correlation, geographical correlation, and further technological correlation) 

and was developed by by Weidema and Wesnæs (1996) to characterize uncertainties 

of LCI data. The general advantage of this approach is that data quality can be 

directly used to estimate the quantitative uncertainty of the respective inventory data 

and the effect of these uncertainties on the results. The approach for estimating 

uncertainty ranges by Hedbrant and Sörme (2001) as developed to study heavy 

metal flows in urban systems  

The developed approach consists of data quality assessment as a basis for estimating 

the uncertainty of input data. Four different implementations of the approach with 

respect to the translation of indicator scores to uncertainty ranges (linear- vs. 

exponential-type functions) and underlying probability distributions (normal vs. log-

normal) are examined. 

The approach consists of several steps, which can be summarized as follows: 

1) Evaluation of data quality with respect to reliability, completeness, temporal 

and geographical correlation, and other correlations using indicator scores. 

For the evaluation of expert estimates, only one data quality dimension is 

used. 

2) Translation of each indicator score into specific uncertainties, taking into 

account the sensitivity of the quantity of interest with respect to data quality 

imperfection. 

3) Aggregation of the uncertainties associated with the individual scores to the 

overall uncertainty estimate for the material flow. 

5.1.5 Information and information defects 

Scientific activity has always been undertaken with the aim of revealing or creating 

information, be it by observing and describing phenomena such as nature in its 

immediate surroundings, the relation of objects in space or the behaviour of 

individuals, among many others. One of the most widely applied formal concepts of 

information is information theory, as coined by Shannon (1948). Information can be 

understood as opposed to uncertainty, in that additional information reduces 

uncertainty, and vice versa (Schwab 2016). While information theory provides useful 

approaches to technical aspects of information (such as communication and 

transmission), it is limited regarding the semantic content of information, that is, its 

meaning. 

Information defects (Schwab 2016) 

Schwab 2016 presents a quantitative method based on quality indicators and 

information theory ("information defects").  
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Four levels of information in MFA can be distinguished (Figure 6). The first information 

level is “data element” and a data element plus meaning forms “information”. 

“Information background” represents the origination and forming process of the piece 

of information. Placed in context, it forms “MFA information”. 

 

Figure 6: MFA information is information in MFA context: A data element plus 

meaning forms information, this information has a background and in the context of 

an MFA study it forms MFA information. 

 

Data attributes are data-associated annotations concerning statistical properties, 

meaning, origination and application of the data. These data attributes are 

systematically documented and evaluated in a data characterization matrix, which 

forms the basis for automated estimation of data quality and subsequent 

quantification of information content.  

The MFA data characterization matrix is structured according to the four information 

levels and related attributes are grouped in attribute groups (see Table 9). The data 

characterization matrix facilitates the systematic documentation of MFA data and 

designated attributes. 

 

Figure 7: Concept of MFA information defects and their position in the data 

characterization framework "Data" are numerical values, "entity" is a real-world 

object or phenomenon described by an information element, "qualitative MFA 

system" is a system to be quantified by introduction of quantitative information. 
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Table 9: Structure of the data characterization matrix by information levels and 

attribute groups 

 

 

Uncertainty in regional MFA is rather an epistemic than an aleatory phenomenon, i.e 

not a consequence of natural variability but of imperfect knowledge. Knowledge 

shortcomings are here expressed as “defects of information”. Information defects are 

belief indicators that reflect the deviation of given information from a desired state 

of perfect knowledge. They are expressed on an ordinal scale from 0 (no information 

defect) to 1 (maximum information defect). The four information defects “semantic”, 

“representativeness”, “provenance” and “context” (IDS, IDR, IDP, IDC) appear to be 

relevant for MFAs (Schwab 2016). 
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 IDS refers to the semantic precision or resp. imprecision of the meaning of 

data (Does the specification “smart phones” also refer to mobile phones from 

before the technological leap, which are still “out there”?). 

 IDR indicates how well a given data element represents the entity of interest 

(Is the complex entity “Pd concentration of mobile phones” quantified based 

on one or more measurements or independent references?). 

 IDP considers the origination and collection method of a data element (How 

reliable are the information producer and the data collection method?).  

 IDC designates how well a given data element fits the context of a study (Is 

the data element timely and does it refer to the geographical area studied?). 

The information defect per flow IDF is quantified in three steps. First, the quality of 

each data element is described by a set of four defects IDi (IDS, IDR, IDP and IDC). 

Second, each information element is described by one total information defect (IDtot), 

which is an aggregation of the IDi of the respective data element. Third, the data 

quality of each flow is described as IDF, which is a combination of the IDtot of the 

respective information elements (according to Figure 7). 

5.2 Uncertainty analysis 

5.2.1 Gauss’s law of uncertainty propagation 

The propagation of uncertainties can be evaluated by applying Gauss’s law of error 

propagation to a function of interest (Brunner and Rechberger 2016):  

 

The expectation of the result Y and the variance of the result can be estimated from 

the following two equations. The latter is called Gauss’s law of error propagation. 

 

If the variables Xi are independent or uncorrelated the above named equation can be 

reduced to the following equation. 

 

with 

μi = E(Xi) = mean of Xi 
σi = std(Xi) = standard deviation of Xi 
σi2 = var (Xi) = variance of Xi 

σij  = cov(Xi,Xj) = covariance of Xi and Xj 
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5.2.2 Data reconciliation 

Because measurements and estimates are subject to measurement or estimation 

errors, they virtually always violate model constraints (e.g., the law of mass 

conservation). The idea of data reconciliation is to statistically adjust the 

measurements and estimates in order to resolve contradictions and find the values 

that fit the model the best. Data reconciliation is feasible only if the given system of 

equations (i.e., constraints) can be transformed in such a way that at least one 

equation without unknown variables can be found. All measured and estimated 

variables appearing in such equations can be adjusted. Equations containing only 

constant variables cannot be used for data reconciliation (there are no measured or 

estimated variables to be reconciled) but can be exploited to perform plausibility 

checks on constant input data (Brunner and Rechberger 2016). By data 

reconciliation, the mean values of measured and estimated data are adjusted in such 

a way that contradictions in model constraints disappear. The best solution is found 

when the sum of squares of the necessary adjustments weighted by the inverse of 

the measurement or estimation variances reaches a minimum: 

 

This procedure is known as the method of weighted least squares, with F being the 

objective function to be minimized. 

 

 

Figure 8: Data reconciliation with the software STAN 
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Cencic and Frühwirth (2015) and (Cencic 2018) present a new method, based on 

Bayesian reasoning, for the reconciliation of data from arbitrary probability 

distributions. The main idea is to restrict the joint prior probability distribution of the 

involved variables with model constraints to get a joint posterior probability 

distribution. The procedure is demonstrated with the help of simple graphical 

examples. Because in general the posterior probability density function cannot be 

calculated analytically, it is sampled with a Markov chain Monte Carlo (MCMC) 

method. From this sample the density and its moments can be estimated, along with 

the marginal densities, moments and quantiles. The method is tested on several 

artificial examples from material flow analysis, using an independence Metropolis–

Hastings sampler. 

The advantages of the Bayesian approach are: First, arbitrary continuous pdfs can 

be used to describe the uncertainty of the observations. Second, even nonparametric 

estimators of the pdf are allowed, provided that it is possible to draw a random 

sample from them. Third, not only means, variances and co-variances of observed 

and unobserved variables can be computed a posteriori, but also various other 

characteristics of the marginal posteriors, such as the mode, skewness, quantiles, 

and HPD intervals (Cencic 2018). 

5.2.3 STAN Software 

The use of a software to support MFA has many advantages: graphical modelling with 

automatic translation into a mathematical model; database of collected data including 

source documentation; consideration of data uncertainties; reconciliation of 

contradicting data; computation of unknown quantities of mass flows and stocks; 

computerized display of resulting flows as Sankey-style diagrams, and others. 

STAN (short for subSTance flow ANalysis) is a free software that supports performing 

material flow analysis (MFA) according to an Austrian standard. STAN is a ready-to-

use tool for doing MFA while taking into account uncertainty (Cencic and Rechberger 

2008). 

Table 10: STAN Software (Laner et al. 2014) 

Data uncertainty 

characterization 

Mathematical 

treatment 

Model output 

evaluation 

Typical 

application 

Uncertain data are 

specified as the 

mean and standard 

deviation of a 

normal distribution 

Analytical calculation 

of data reconciliation 

(for overdetermined 

systems) and error 

propagation  

Resulting 

uncertainty and, 

potentially, the 

extent of data 

reconciliation to 

balance the 

system are used to 

evaluate the model 

output 

Mainly 

descriptive, but 

also 

exploratory 

MFA 

 

The calculation algorithm uses mathematical statistical tools such as nonlinear data 

reconciliation (to adjust conflicting measurements or estimates) and error 

propagation (to compute the uncertainty of unknown quantities that can be 

calculated), and performs basic statistical tests to detect gross errors. All uncertain 

data and parameters (e.g., mass fractions, mass flows, and transfer coefficients) are 

described by normally distributed independent random variables. Uncertain 
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quantities are expressed by the mean and a measure of variance (Brunner and 

Rechberger 2016). Based on these assumptions, it is possible to use Gaussian error 

propagation and data reconciliation to calculate the uncertainty of model outputs. 

5.2.4 Mathematical material flow analysis (MMFA) 

Mathematical material flow analysis (MMFA) is the combination of conventional 

material flow analysis (MFA) with state-of-the-art mathematical modelling concepts 

(Bader et al. 2011). An MMFA describes and quantifies the material flows through a 

system (Schaffner et al. 2009). Because the assumption of normally distributed 

quantities is not always compatible with existing knowledge, generalized statistical 

approaches allowing for assigning various probability distributions to uncertain 

quantities needs to be suggested (Laner et al. 2014).  

Table 11: Mathematical material flow analysis (Laner et al. 2014) 

Data uncertainty 

characterization 

Mathematical 

treatment 

Model output 

evaluation 

Typical 

application 

Uncertain model 

parameters are 

specified using 

various probability 

density functions 

Mathematical 

functions 

(parameters) are 

fitted to available 

data. MCS is used to 

estimate model 

outputs and 

calibrate the model 

Sensitivity analysis 

for identifying 

critical model 

parameters and to 

check plausibility 

of results 

Mainly 

exploratory, 

but also 

descriptive 

MFA 

 

Often, log-normal distributions are chosen to characterize uncertain quantities 

because they exclude negative values and allow skewed distributions which are 

particularly common for low mean values and large variances. In MFA, uniform 

distributions are typically chosen when it is possible only to specify a range of 

probable values. The probability distributions of the model parameters and input data 

are consequently used to estimate the probability distribution of the model outputs 

by applying Monte Carlo simulations (MCSs). Procedures to handle uncertainty in MFA 

were introduced by Baccini and Bader (1996) within the framework of mathematical 

material flow analysis (MMFA).  

MMFA is performed following a step-wise, iterative approach consisting of system 

analysis, establishing the mathematical model, model calibration, and model 

simulation (including sensitivity and uncertainty analysis) (Laner et al. 2014). Based 

on Schaffner et al. (2009) an MMFA is carried out in six iterative steps: 

1) The system analysis defines the temporal and spatial boundaries and the 

indicator substances. The relevant balance volumes and flows in the system 

are identified on the basis of an acquired understanding of the system. 

2) The relationships within the system are formulated as mathematical equations 
(model approach), in which the variables describe the flows and stock change 

rates of the system. A set of parameters is used to quantify these variables. 

3) The input data for these parameters is acquired from all available sources. 

These include measurement results as well as literature data and estimations. 

The model is calibrated in discussions with experts.  
4) With the compiled dataset, the current state (status quo) of the nutrient flows 

within the system is simulated, including the uncertainties. The plausibility of 
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the simulations is checked by comparing these with data from primary 

measurements and other studies.  

5) The critical parameters of the system, i.e. the key parameters driving forces 

which influence the nutrient flows, can be identified with the aid of a sensitivity 

analysis. 

6) On the basis of this sensitivity analysis, possible mitigation measures 

(scenarios) are simulated and evaluated for their effectiveness. 

 

MMFA has similarities with a Bayesian approach. Uncertain model parameters are 

specified using different kinds of probability density functions. In contrast to a 

Bayesian setting, in this approach, the mathematical functions are fitted to the 

available data. Therefore, it is also an approach on fitting the model structure. The 

probability density functions of the model parameters are estimated using different 

sources and techniques, ranging from formal elicitation of expert to basic (and very 

general) estimation principles, for example, plausibility reasoning. In MFA, uniform 

distributions are typically chosen when it is possible only to specify a range of 

probable values (Dzubur 2017). 

5.2.5 Probabilistic material flow analysis (PMFA) 

The probabilistic material flow analysis (PMFA) aims at calculating from a whole life 

cycle perspective concentrations of potential contaminants in complex systems, 

covering all environmental compartments and life stages of these contaminants. The 

method of substance/material flow analysis is used to determine flows to and 

amounts of compounds within the studied environmental compartments and is 

extended to a PMFA (Gottschalk et al. 2010). 

PMFA (similar to MMFA) is a modelling approach for probabilistic MFA. Their step-

wise procedure is used to calculate model outputs based on theoretical or data-driven 

descriptions of model parameters and inputs without any necessity to calibrate the 

model. Nevertheless, the approach contains elements adapted from Bayesian 

statistics because prior distributions are defined for all model parameters and 

posterior distributions are derived using Markov chain Monte Carlo (MCMC) modelling 

(Laner et al. 2014). 

Table 12: Probabilistic material flow analysis (Laner et al. 2014) 

Data uncertainty 

characterization 

Mathematical 

treatment 

Model output 

evaluation 

Typical 

application 

Prior probability 

distributions are 

defined using the 

knowledge about 

the model 

parameters 

Based on observed 

data, posteriors are 

derived using 

Markov chain Monte 

Carlo (MCMC) 

modelling and the 

uncertainty of flows 

is estimated 

Sensitivity analysis 

for identifying 

critical model 

parameters and for 

scenario 

development 

Exploratory 

MFA 

 

Gottschalk et al. (2010) define six main steps to develop a modelling approach 

combining sensitivity and uncertainty analysis, Monte Carlo simulation, Bayesian and 

Markov Chain modelling to propose a PEC modelling approach for cases characterized 

by a distinct lack of data. 



 

MFA – Uncertainty - Deliverable 3.3 38 

1) Step 1: Goal definition, including system boundaries constituted by the 

studied compounds, time and space 

2) Step 2: System modelling, definition of goods, products, processes and 

functions/relations (transfer coefficients) 

3) Step 3: Stochastic/probabilistic modelling of the input parameters using 

distributions 

4) Step 4: Calculation/computation 

 Deterministically with point values (e.g. for model validation), (MFA 

standard) 

 Monte Carlo simulation with the modelled distributions 

o  Bayesian optimization 

o  Markov Chain Monte Carlo modelling 

5) Step 5: Sensitivity analysis 

6) Step 6: Interpretation, assessment of pollution potential (PEC) 

 

Bornhöft et al. (2016) presented a new “Dynamic Probabilistic Material Flow Analysis 

(DPMFA)” method, combining dynamic material flow modelling with probabilistic 

modelling. Material transfers that lead to particular environmental stocks are 

represented as systems of mass-balanced flows. The time-dynamic behaviour of the 

system is calculated by adding up the flows over several consecutive periods, 

considering changes in the inflow to the system and intermediate delays in local 

stocks. Incomplete parameter knowledge is represented and propagated using 

Bayesian modelling. 

5.2.6 Monte Carlo simulation 

The Monte Carlo simulation method has been applied to measurement system 

uncertainties with many claimed advantages. Monte Carlo simulation was devised as 

an experimental probabilistic method to solve difficult deterministic problems since 

computers can easily simulate a large number of experimental trials that have 

random outcomes. When applied to uncertainty estimation, random numbers are 

used to randomly sample parameters’ uncertainty space instead of point calculation 

carried out by conventional methods. Such an analysis is closer with the underlying 

physics of actual measurement processes that are probabilistic in nature. Monte Carlo 

method has many advantages over conventional methods in the estimation of 

uncertainty especially that of complex measurement systems’ outputs. The method, 

superficially, is relatively simple to implement (Papadopoulos and Yeung 2001). To 

perform Monte Carlo simulation, each uncertain input parameter has to be specified 

as an uncertainty distribution.  

However, often an enormous amount of parameters is used and it is unfeasible to 

characterize the uncertainty ranges for all of these parameters in detail. This problem 

can be overcome with the stratified procedure. First, all uncertain input parameters 

are assigned a distribution with the widest range that can be regarded as realistic, 

as based on measured data or expert judgment. Next, a sensitivity analysis (e.g., 

Monte Carlo simulation in combination with Spearman Rank correlation) is performed 

to identify the parameters that contribute most to the output uncertainty. These 

important parameters are specified in more detail and their importance is confirmed 

in a second sensitivity analysis. This second analysis is necessary because defining 

parameters in more detail may affect their uncertainty importance. Finally, when all 

important input parameters have been specified in detail, a Monte Carlo simulation 

can be performed to quantify the output uncertainty (Huijbregts et al. 2003). 
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5.2.7 Fuzzy set theory  

Recent work has demonstrated that fuzzy mathematics provides a computationally 

efficient alternative to probabilistic methods for representing data uncertainty (Tan 

et al. 2007). So far, in an MFA context, fuzzy reconciliation approaches have been 

compared to the standard least squares approach to quantify material flows of 

resource and recycling systems (Dzubur 2017).  

When performing uncertainty propagation, most practitioners choose to represent 

uncertainties by single probability distributions and to propagate those using 

stochastic methods. However, the selection of single probability distributions appears 

often arbitrary when faced with scarce information or expert judgement (epistemic 

uncertainty). The possibility theory has been developed over the last decades to 

address this problem (Clavreul et al. 2013).  

The concept of fuzzy set theory was introduced by Zadeh (1965) to handle 

imprecision and uncertainty (Laner et al. 2014). Basic knowledge on the probability 

theory is first recalled, followed by a detailed description of epistemic uncertainty 

representation using fuzzy intervals. The propagation methods used are the Monte 

Carlo analysis for probability distribution and an optimisation on alpha-cuts for fuzzy 

intervals. The proposed method generalizes the process of random sampling to 

probability distributions as well as fuzzy intervals, thus making the simultaneous use 

of both representations possible (Clavreul et al. 2013). A special case of a fuzzy set 

is an interval where the membership function only takes values 0 or 1 (an element 

either belongs or does not belong to the set). For example, for the interval [0, 0.35], 

the value of the membership function of all values between 0 and 0.35 is one (Laner 

et al. 2014) 

Table 13: Fuzzy set theory (Laner et al. 2014) 

Data uncertainty 

characterization 

Mathematical 

treatment 

Model output 

evaluation 

Typical 

application 

Model parameters 

are fuzzy quantities 

defined by 

membership 

function 

Mathematical 

operations for fuzzy 

quantities allow for 

propagating data 

characteristics 

through the model 

Actual state of 

knowledge is 

better reflected by 

the model results 

in the case of 

scarce information 

Conceptual 

suggestions for 

MFA, but not 

yet case 

studies 

 

There is a fundamental difference between true random variability, as depicted by a 

single probability distribution, and epistemic uncertainty, due to incomplete or 
imprecise information (Clavreul et al. 2013). Alternative representations of epistemic 

uncertain quantities (which typically applies to most parameters and data in MFA), 

using interval concepts, possibility theory or fuzzy set theory, have been suggested 

for environmental assessment tools. The concept of fuzzy set theory was introduced 

to handle imprecision and uncertainty. 

The method used to propagate fuzzy intervals in the general case is very analogous 

to the Monte Carlo method using single probability distributions, except that in the 

case of parameters represented by fuzzy intervals, intervals are randomly sampled 

instead of single values, based on α-cuts.  
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An example of α-cut is presented in Figure 9 for alpha=0.6 the α-cut is the interval 

[16.4; 20.9]. If the model is relatively simple and monotonous, propagation of the 

fuzzy intervals through the model can be performed simply using interval calculus on 

alpha-cuts. For alpha=0 to 1 with, e.g. step=0.1, the min and max values of the 

model are determined for all values of the alpha-cuts. However, if the model is not 

monotonous, it may not be possible to determine the min and max values of the 

model based solely on the min and max values of the alpha-cuts. In this case it is 

necessary to use an optimization algorithm to find the min and max values of the 

model for all parameter values within the alpha-cuts. 

 

Figure 9: Example of a possibility distribution (Clavreul et al. 2013) 

 

Data reconciliation consists in modifying noisy or unreliable data in order to make 

them consistent with a mathematical model (herein a material flow network). The 

conventional approach relies on least squares minimization (Dubois et al. 2013). 

Dubois et al. (2014) use a fuzzy set-based approach, replacing Gaussian likelihood 

functions by fuzzy intervals, and a leximin criterion. The setting of fuzzy sets provides 

a generalized approach to the choice of estimated values that is more flexible and 

less dependent on oftentimes debatable probabilistic justifications. It potentially 

encompasses interval-based formulations and the least squares method, by choosing 

appropriate membership functions and aggregation operations. 

Dzubur (2017) presents a fuzzy set-based approach to data reconciliation in material 

flow modelling. As various MFA studies rely on data about flows and stocks from 

different sources with varying quality, in the first study, an uncertainty analysis 

method, which expresses the belief that the available data are representative for the 

value of interest via fuzzy sets, is presented, specifying the possible range of values 

of the data. A possibilistic framework for data reconciliation in MFA was developed 

and applied to a case study on wood flows in Austria. The framework consists of a 

data characterization and a reconciliation step. Membership functions are defined 

based on the collected data and data quality assessment. Possible ranges and 

consistency levels (quantifying the agreement between input data and balance 

constraints) are determined. The framework allows for identifying problematic data 

and model weaknesses, and can be used to illustrate the trade-off between 

confidence in the data and the consistency levels of resulting material flows. 
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5.3 Sensitivity analysis 

Different methods for the treatment of different types of uncertainty are available: 

Uncertainty analysis is performed in order to quantify the range of possible output 

outcomes (e.g. indicators), given a set of uncertain inputs. A related practice is 

sensitivity analysis, which is the study of how uncertainty in the output can be 

apportioned to different sources of uncertainty in the model input.  

In contrast to uncertainty analysis, approaches focusing on sensitivity analysis 

analyse the effects of parameter uncertainty or variations on the model results 

relatively, without trying to capture the true range of variation (Dzubur 2017). 

Table 14: Sensitivity analysis (Laner et al. 2014) 

Data uncertainty 

characterization 

Mathematical 

treatment 

Model output 

evaluation 

Typical 

application 

Define variation 

ranges for selected 

parameters using 

various probability 

density functions 

MCS is used to 

estimate the 

variation of model 

outputs. 

Evaluation of the 

effect of 

parameter 

variation on the 

model results to 

identify critical 

model element 

Exploratory 

MFA (typically 

dynamic 

models) 

 

Because this facilitates the definition of parameter uncertainties (i.e., the range 

within they may vary) and puts the focus on evaluating the robustness of the material 

flow model, this type of approach has been frequently applied to dynamic material 

flow models (Laner et al. 2014).  

Dzubur (2017) summarized that sensitivity analysis is carried out to investigate the 

effect of individual assumptions and parameter specifications on the model output by 

exploring the effects of the changes of input parameters on the model output. 

Whereas local sensitivity analysis methods focus on testing different perturbations of 

constant or uncertain input parameters and analyse the specific consequences in the 

output, global sensitivity analysis focuses on the uncertainty in the output and how 

it can be apportioned to different sources of uncertainty in the inputs (Saltelli et al. 

2008). The process of recalculating outcomes under alternative assumptions to 

determine the impact of variables using global sensitivity analysis can be useful to 

identify model inputs that cause significant uncertainty in the output in order to 

increase robustness of the model and understanding of the relationships between 

input and output variables (Pannell 1997). 

Analytical local methods using partial derivatives are usually not useful in dynamic 

MFA systems, given that the model input parameters are uncertain and the model 

is of unknown linearity (Dzubur 2017). The common way to treat dynamic MFA in 

previous literature is local sensitivity analysis, using one-at-a-time (OAT) analysis, 

where one input variable is changed while the others remain fixed in order to see 

what effect this produces on the output. Whereas local sensitivity analysis methods 

focus on testing different perturbations of (constant or uncertain) input parameters 

and analyse the specific consequences in the output, global sensitivity analysis 

focuses on the uncertainty in the output and how it can be apportioned to different 

sources of uncertainty in the inputs (Dzubur 2017). 
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5.4 Comparison of model structures 

Comparisons of model structures are rare in MFA. It is possible to compare the model 

structure like Klinglmair et al. (2016) with the model structures of the Austrian and 

Danish phosphorus balance systems. The differences in system boundaries and 

definition of flows and processes are highlighted and data reconciliation is used to 

define a measure of model quality (Dzubur 2017). Another comparison was done by 

Pauliuk et al. (2013). They compared three different approaches of material balance 

equation systems to quantify the global steel cycle. The comparisons in both studies 

are done qualitatively (Dzubur 2017). 

A comparison of a leaching stock approach and delay approach for dynamic SFA is 

given in (Kleijn et al. 2000) to identify and estimate future waste flows from societal 

stocks. The study shows that stock modelling appears to be a useful approach for 

environmental policy making. The approach of combining the inflow distribution with 

a delay and a life-span distribution to arrive at an estimate for the outflow distribution 

certainly works, although very little can be concluded about how realistic the results 

may be. The approach must be tested with empirical data to obtain more insight. 

The analytical calculation of the steady state between the mentioned two modelling 

approaches is given by (Van der Voet et al. 2002). This study presents analytical 

conditions under which the calculations of the leaching approach will produce 

acceptable solutions for dynamic models which should typically be solved using the 

delay approach (Dzubur 2017). 
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6   Uncertainty in MFA - Review 

In the following an overview of different MFA studies is given which include in one 

way or another uncertainty in their case studies. The details of the literature review 

can be found in the annex (Table 18 and Table 19). Many studies have been reviewed 

and in total 40 studies are included in the following summary.  

 

Table 15: Uncertainty in MFA - Reviewed studies (n=39) 

No. Author No. Author 

1 (Allegrini et al. 2014) 21 Hoenderdaal et al. 2012) 

2 (Allesch et al. 2016) 22 (Klinglmair et al. 2015) 

3 (Andersen et al. 2010) 23 (Kovanda  et al. 2017) 

4 (Andersen et al. 2011) 24 (Kral et al. 2014) 

5 (Bader et al. 2011) 25 (Laner et al. 2015) 

6 (Bajze ̌lj et al. 2013) 26 (Morf et al. 2007) 

7 (Buchner et al. 2014) 27 (Morf et al. 2013) 

8 (Buchner et al. 2015) 28 (Ott et al. 2012) 

9 (Buchner et al. 2015) 29 (Rechberger et al. 2002) 

10 (Chancerel et al. 2009) 30 (Reck et al. 2010) 

11 (Cooper et al. 2013) 31 (Schulze et al. 2016) 

12 (Cullen et al. 2010a) 32 (Spatari et al. 2002) 

13 (Cullen et al. 2013a) 33 (Spatari et al. 2003) 

14 (Cullen et al. 2013b) 34 (Stanisavljevic et al. 2014) 

15 (Danius et al. 2001) 35 (Tonini et al. 2014) 

16 (Dubois et al. 2014) 36 (Van Beers et al. 2005) 

17 (Egle et al. 2014) 37 (Van Eygen et al. 2017) 

18 (Glöser et al. 2013 38 (Vyzinkarova et al. 2013) 

19 (Gradel et al. 2004) 39 (Zhang et al. 2008) 

20 (Guyonnet et al. 2015) 40 (Zoboli et al. 2016) 

 

Most of the reviewed studies provide an MFA focusing on the whole economy of one 

substances (e.g. P Flows) including the processes mining, production, consumption 

and waste management. About one third assess the waste management either 

including all processes or only focussing on one waste stream (e.g. WEEE) or on one 

technology (e.g. composting). The input data for the MFA comes from heterogeneous 

sources.  

 Literature: (industrial and official reports, scientific papers, sales forecasts, 

statistical data)  

 Expert opinions and personal communications 

 Measurement: Sampling and analysis 
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Depending on the data source and the goal of the studies uncertainty was calculated, 

estimated or described. About 85 % have calculated or estimated an uncertainty 

(Figure 10).  

 Calculated: The uncertainty is calculated based on a mathematical/statistical 

approach (e.g. standard deviation) 

 Estimated: The uncertainty is estimated based on knowledge about the date 

sources and experiences. 

 Described: No method to assess the uncertainties is applied but the 

uncertainty is described in detail. 

  

 

Figure 10: Uncertainty applied in the reviewed studies (n=40) 

 

Different approaches to deal with uncertain data have been developed and were 

applied in the reviewed studies. The methods deal with uncertainty in MFA range 

from qualitative discussions to sophisticated statistical approaches. The different 

methods are explained in detail in chapter 4  . 
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Table 16: Uncertainty approaches applied in the reviewed studies (n=40) 

Data uncertainty - Approach No. 

Asymmetric (Hedbrant and Sörme) 1 

Asymmetric (Hedbrant and Sörme), STAN 2 

Asymmetric (Hedbrant and Sörme), STAN, Combination (Laner) 1 

Asymmetric (Hedbrant and Sörme), symmetric (standard deviation), STAN 2 

Combination (Laner) 3 

Data reconciliation (Dubois) 1 

Detailed description of uncertainty 3 

Fuzzy method 1 

Gauss’s Law of error propagation, STAN 2 

Monte Carlo Simulation 1 

Monte Carlo Simulation, Global sensitivity analysis, 1 

Sensitivity analysis 1 

Sensitivity analysis, Gauss’s Law of error propagation 1 

Set probability (Kovand) 1 

STAN and fuzzy model 1 

Symmetric (standard deviation) 1 

Symmetric (standard deviation), Gauss’s Law of error propagation,  3 

Symmetric (standard deviation), Monte Carlo Analysis 1 

Symmetric (standard deviation), STAN 6 

Uncertainty mentioned but not calculated 4 

- 3 

 

Most of the studies used a symmetric approach to deal with uncertainty using 

standard statistics to estimate standard deviations and using Gauss’s Law of error 

propagation. Some additionally include Monte Carlo Simulation and STAN for their 

analysis. Six studies used the approach developed by Hedbrant and Sörme (2001). 

These studies only focus on one substances and mainly evaluate the whole economy 

with a static MFA. Further sensitivity analysis is applied to quantify the range of 

possible output outcomes (e.g. indicators), given a set of uncertain inputs. Some 

studies didn’t calculate the uncertainty but described the quality of the data. For 

example little mass flows are not shown due to uncertainty reasons. Three studies 

used the combined approach based on Laner et al. (2015b)  

The geographic system boundaries of the reviewed MFA include municipalities, cities, 

countries, continents or the whole world (global). The reviews shows that on the level 

of cities and countries uncertainty is more often calculated based on 

mathematical/statistical method. On the global or continent level estimations or 

descriptions of the uncertainty are more common. Hence, the review indicates that 

(as expected) the smaller the geographical boundary the easier it is to actual 

calculate uncertainties. 
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Figure 11: Uncertaitny applied in the reviewed studies related to the geographical 

system boundary (n=40) 

 

Material flow analysis has been conducted to various extents. Most of the reviewed 

studies used a static model to describe the material flows. Static models are available 

on global and national scales. While a static MFA is rather concerned with generating 

a better understanding of a material system based on simple accounting principles 

(i.e., mass-balance equations), a dynamic MFA is primarily used to investigate the 

stock build-up of materials in society (i.e., secondary resources) and in the 

environment (i.e., dissipative losses) based on the investigation of material flows 

over time (Brunner and Rechberger 2016). Based on (Laner and Rechberger 2016) 

static and dynamic MFA methods are: 

 Static MFA are established for a certain balancing period in time, for instance, 

for 1 year. They provide a snapshot of a system in time and are done at 

different levels of sophistication to investigate the patterns of material use 

and material losses in the system. Static MFA is typically used to generate a 

quantitative understanding of material systems and develop alternative 

management scenarios. 

 Dynamic MFA describe the behaviour of a system over several time 

increments. Thus, dynamic MFA provides information about material usage 

over time and consequent changes in stocks and flows within the system. 

While material flows in a static MFA are time independent (i.e., they are not 

related to material flows at another point in time), material flows in a dynamic 

model at the time T can potentially depend on all previous states of the 

system. 

The reviewed studies vary greatly in scope and depth and shows that there is a need 

for development of a standardized methodology to account uncertainties in MFA 

studies and to ensure high quality within the decision making process (Patrício et al. 

2015). A systematic evaluation of uncertainty in MFA is important to understand the 

robustness of material flow estimates, independent of the approach used for 

expressing uncertainty (Laner et al. 2015a). 
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7   Requirements to survey and report 

uncertainty 

7.1 General requirements 

Uncertainty is often characterized without the use of formal procedures, which 

impairs statements about the reliability of the MFA results based on uncertainty 

analysis. Therefore, consistent and transparent procedures for uncertainty 

characterization are imperative for uncertainty analysis in MFA. In addition, different 

uncertainty types need to be addressed by different concepts used to express and 

propagate uncertainty.  

Apart from the existing applications of probability theory, fuzzy set theory may be 

well suited for dealing with epistemic uncertainty in MFA. (Laner et al. 2014). 

Uncertainty evaluation of data collected by different institutions should become a 

standard procedure, given that no general benchmark can be assumed and the data 

may have a major impact on the result, which is the case with the regional transport 

statistics (Patrício et al. 2015). There is a need for development of a standardized 

methodology to account for the uncertainty in MFA studies to ensure high quality of 

the decision support information and allow or proper comparison between studies 

conducted by different authors in different countries, regions, and metropolitan 

areas. In addition, further development of imputation methods for data requiring 

imputations should be pursued (Patrício et al. 2015). This means that it is often not 

possible to directly compare the measurement errors of similar data sets from 

different institutions. However, standardization of international data collection 

contributes to bridging this gap (Patrício et al. 2015).  

The choice of what to include and what to leave out is one of the most fundamental 

and difficult problems in quantitative analysis. Some system and problems involve 

tight coupling between a handful of factors and rather loose coupling to the broader 

world. But more typically systems are interconnected with the broader world in what 

appears as seamless web of associations and dependencies. Carful study may help 

but professional taste and judgment must play a significant role in most cases. Clear 

communication of what was done, why it was done and that the analyst believes are 

the consequences, are probably as important as anything (Morgan et al. 1992). 

As described in chapter5  , there exists an almost overwhelming variety of different 

methods for representing, propagating and analysing uncertainties. Morgan et al. 

(1992) define criteria that may be relevant to choice of method, these criteria may 

be organized into the following four groups: 

 

Uncertainty about the model form:  

What is the relative importance of uncertainty about the form of the model versus 

the contributions of parameter uncertainty? If model structure and relationships are 

disputed or poorly known, extensive evaluation of parameter uncertainty within a 

specific model may be pointless and misleading, if the model structure is well 

characterized, parameter uncertainty analysis is typically appropriate. 
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The nature of the model: 

How large is it, in terms of the number on uncertain input and the computational 

cost of a single run? How large are the uncertainties? Is its response surface 

smooth, monotonic in its inputs, and is it reasonably approximated by simple 

functional forms? Or does it show complex, nonmonotonic or discontinuous 

behaviour. 

The requirements of the analysis: 

What is the main purpose of the analysis? Are significant actions to be based directly 

on its results? Is the uncertainty analysis intended to guide refinement on the model 

and/or decisions about what additional information to collect? Is the central 

tendency (mean or median) of the outputs the main interest, or is a solid 

characterization of the uncertainty also important? How precise an estimate of the 

full distribution is necessary? Are extreme tails of the output of importance? How 

much precision is needed in the identification and ranking the main contributors to 

the uncertainty? 

Resources available: 

How much time (calendar time and staff time) is available to conduct the analysis? 

What kind of skills and experience to the analysts have? What kind of computing 

resources, and, in particular, what kind of software is available? 

 

7.2 Uncertainty: Framework for a step-wise 
procedure 

Laner et al. (2014) presented a step-wise iterative procedure for handling uncertainty 

in MFA. The full procedure relates to MFA with a focus on understanding mechanisms 

relevant for material flows in the system (i.e., exploratory MFA). However, apart from 

step 5, the scheme in Figure 12 also applies to descriptive MFA; the differences are 

that the focus is on the consistent characterization of MFA data and that simpler 

mathematical concepts are typically used to propagate uncertainty.  

Depending on the specific application, only parts of the scheme in Figure 12 may be 

completed. Some studies may not warrant full uncertainty analysis because of 

different foci of the MFAs. If the MFA is mainly used to quantify material balances to 

improve the database, steps 1 to 3 are of major importance and step 4 resembles 

the result of the MFA. If the goal of the MFA does not require describing the inherent 

uncertainty of model outputs resulting from the actual data situation, the 

characterization of data uncertainty (step 2) is less important than in descriptive MFA, 

but sensitivity analysis and/or scenario modelling (step 5) are central elements of 

such approaches. Therefore, in consideration of the problems related to capturing the 

actual uncertainty of MFA data and parameters, approaches focusing on sensitivity 

analysis provide an elegant way of exploring the robustness of MFA models and their 

results. 
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Figure 12: Schematic illustration of the step-wise procedure to consider uncertainty 

in material flow analysis (MFA) (based on Laner et al. 2014) 

 

1.) Establish mathematical model 

 Define system elements and relationships between these elements 

 Define equations based on mass balance principle 

The first step for handling uncertainty in MFA, according to Figure 12, is to define 

the elements of the system and the mathematical relationships between them in 

consideration of the mass balance principle. This step forms a part of the system 

definition step and ultimately depends on the goal and scope of the analysis. 

 

2.) Characterize data uncertainty 

 Evaluate information about MFA data (model parameters, inputs and 

outputs) 

 Define characterising functions (uncertainty) 

In the second step, uncertain data are characterized by appropriate functions. 

Basic scientific knowledge (e.g., atomic weight of elements), past data, or expert 

beliefs can be used to describe the intersubjective knowledge (i.e., expressing 

current scientific knowledge) of a specific quantity. If sufficient empirical 

evidence is available, statistical parameter estimation techniques or goodness-

of-fit tests can be applied. However, because data uncertainty characterization 

is often inhibited by scarce information in MFA, formal expert elicitation 

techniques (Morgan et al. 1992) may be used to express the current scientific 

knowledge of a quantity. In the case of very poor knowledge or imprecision, this 

needs to be reflected by the uncertainty characterization (e.g., large spread of 



 

MFA – Uncertainty - Deliverable 3.3 50 

probability density functions or use of fuzzy data). Data characterization should 

also account for logic constraints, for example, the non-negativity of certain 

variables (e.g., substance concentration of a certain good). In the case of 

stochastic simulations, normal or log-normal (good data situation), triangular 

(the most probable value can be derived from expert estimates), and uniform 

distributions (only vague knowledge about the range containing the true value) 

are suggested to express information quality. In fuzzy set theory, the amount of 

available information should be reflected in the shape and range of the 

membership function (e.g., simple interval vs. trapezoidal function). 

 

3.) Combine data and mathematical model 

 Balance model and cross-check data 

 Evaluate plausibility and reconcile data iterative 

 Produce a calibrated model using all available data 

In the third step, the material flow model is balanced using all available 

information about model parameters, inputs, and outputs. The distinction of 

model parameters, model inputs, and model outputs enables statements 

regarding the ability of the model to produce results compatible with 

observations on the output flows (e.g., application of plausibility criteria). 

Because the focus of descriptive MFA is to use all data consistently in a snapshot 

(for a certain time period) model of the system, discriminating between 

parameters, inputs, and outputs is particularly important for exploratory MFA, 

where one of the goals is to evaluate the effect of different measures on system 

behaviour using the material flow model. Based on the comparison of model 

results with model output information (or desired output qualities), the quality 

of data for estimating parameter uncertainty may have to be improved. In the 

case of substantial deviations between observed and modelled flows or 

implausible results, additional system information is needed. Consequently, the 

entire procedure of combining data and the mathematical model is iterative and 

may result in several loops of improving the database to arrive at satisfying or 

plausible model results. The procedures for evaluating model outputs include the 

comparison of values before and after data reconciliation, the application of 

plausibility criteria to model outputs, and formal updating of the model using 

concepts from Bayesian inference. 

 

4.) Calculate uncertainty for calibrated model 

 Propagate uncertainty through the model and calculate uncertainty of flows 

 Interpret uncertainty estimates for the resulting flows 

In the fourth step, the calibrated model (satisfying agreement between data and 

model results has been achieved) is used to calculate the final result (material 

flows and associated uncertainty). Uncertainty is typically propagated through 

the model either analytically or using MCS with more than 10,000 simulation 

runs. This is typically the last step for descriptive MFA, where the main effort lies 

in iteratively developing the final model based on the available data and the mass 

balance principle.  
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5.) Analyse sensitivity & develop scenarios 

 Identify critical model parameters 

 Change parameters to perform scenario analysis 

For exploratory MFA, sensitivity analysis is used in the fifth and final step to 

evaluate the effects of parameter variation on the model outputs. It forms the 

basis to identify critical model parameters, which may be in the focus of 

measures addressing the material flows in the system. The effect of varying these 

parameters on the system behaviour (i.e., material flows) can finally be 

investigated by scenario analysis. 

The schematic framework for considering uncertainty in MFA presented in this work 

should facilitate transparent uncertainty analysis in MFA and is suitable to 

accommodate any of the approaches presented here. In addition to providing a 

systematic way to consider uncertainty in MFA, the suggested procedure forms a 

basis for consistently communicating the approach used to consider uncertainty in a 

specific MFA study (Laner et al. 2014). Laner et al. (2015a) demonstrate the use of 

this framework to consider uncertainty and its implementation using two 

fundamentally different concepts to express uncertainty. Subsequently, the Austrian 

Pd flow model is used to establish the material flow model and the concept to produce 

the uncertainty estimates. 

  



 

MFA – Uncertainty - Deliverable 3.3 52 

8   Uncertainty: MinFuture Pyramid 

As already indicated in the previous chapters, a model can never perfectly represent 

a natural system, because of that, model predictions are always uncertain (Dzubur 

2017). MFA relies on data about flows and stocks from different sources with varying 

quality and can be used to serve different purposes in material management, such 

as monitoring systems, forecasting changes, or evaluating alternative strategies.  

Although studies of material flow systems can provide information, they also depend 

on information and a lack of useful information can be a limiting factor. If MFA is seen 

as a way of compiling data to create information about material stocks and flows and 

to aggregate this information to create knowledge about material flow systems, the 

quality of its fundamental components is substantial (Schwab 2016). Within the 

MinFuture project the components are described through the ‘MinFuture Pyramid’ 

where the components are structured hierarchically (see Figure 1 = Figure 13). As 

uncertainty is one component of the hierarchy this report mainly focuses on the 

uncertainty component. But regardless of the MFA approach used; on the different 

levels (components) of the pyramid uncertainty plays an important role. As the 

robustness of the components at higher levels depends on the robustness of the ones 

at lower levels - also the uncertainty is linked to the different components. 

 

Figure 13: The hierarchical pyramid of MFA components. 

 

Table 17 links the different natures of uncertainty (see chapter 4  ) and approaches 

to deal with uncertainty (see chapter 5  ) with the single components of the 

‘MinFuture Pyramid’. Although sometimes the clear delimitation of the nature of 

uncertainty to the ‘MinFuture Pyramid’ components is difficult, it shows that mainly 

the data component is in focus of the different uncertainty descriptions. But also the 

system and models and scenarios components have been taken into account. 

Parameter uncertainty is distinguished from model uncertainty. Parameter 

uncertainty is caused by incomplete knowledge about the real value of certain 

parameters, whereas the model uncertainty originates from an imperfect or 

neglected consideration of real world effects in the model (Buchner et al. 2015a).  
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Table 17: Nature of Uncertainty related to the MinFuture Pyramid 

Description 
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Causes of 
uncertainty 

Non-deterministic behaviour of a 
system 

        

Uncertainty of model parameter values         

Uncertainty of model structure         

Uncertainty due to external influence 
factors 

        

Uncertainty due to numerical solutions 
of model equations 

        

Sources of 
uncertainty 

Statistical variation         

Variability         

Inherent randomness and 
unpredictability 

        

Subjective judgment         

Disagreement         

Linguistic imprecision         

Approximation         

Types of 
Uncertainty 

Parameter Uncertainty         

Scenario Uncertainty         

Model Uncertainty         

Output Variable         

A
p

p
r
o

a
c
h

e
s
 t

o
 d

e
a
l 
w

it
h

 

u
n

c
e
r
ta

in
ty

 

Data 
classification 

Asymmetric uncertainty intervals         

Symmetric intervals         

PEDIGREE Matrix         

Information defects         

Uncertainty 
analysis 

Gauss’s law of error propagation         

Data reconciliation         

STAN Software         

Mathematical material flow analysis         

Probabilistic material flow analysis         

Monte Carlo simulation         

Fuzzy set theory         

Sensitivity analysis         

Comparison of model structures         
 The nature of uncertainty or the approaches to deal with uncertainty can be linked to the component 

of the ‘MinFuture Pyramid’. 
 The nature of uncertainty or the approaches to deal with uncertainty cannot be linked directly to the 

component of the ‘MinFuture Pyramid’ but potential relations are possible. 
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Also the delimitation of approaches to deal with uncertainty to the ‘MinFuture 

Pyramid’ is difficult. But it shows that data classification models focus on formal 

concepts to characterize data quality and data uncertainty typically in combination 

with simple mathematical methods. Data classification methods focus generally on 

input data. Contrary to uncertainty analysis (statistical approaches), the classification 

approaches do not include specific methods for propagating uncertainty through the 

material flow model. In uncertainty analysis (statistical approaches), input data are 

described by characterizing functions (i.e., probability density functions or 

membership functions) and rigorous mathematical methods are applied to evaluate 

the sensitivity and/or uncertainty of model outputs (Laner et al. 2014).  

Uncertainty analysis methods focus more on model calculations than in data 

uncertainty itself although these approaches are using data uncertainty as a base for 

further calculations. As already mentioned, MFA models can be used to serve different 

purposes in material management, such as monitoring systems, forecasting changes, 

or evaluating alternative strategies. Depending on the purpose, MFAs need to include 

different components.  

The following sections describe the relation of the nature of uncertainty and 

approaches to deal with uncertainty with the components of the ‘MinFuture Pyramid’. 

System 

Systems represent the totality of the stocks and flows within boundaries 
defined in space and time at a chosen level of (dis-) aggregation. They 

include observed and unobserved stocks and flows. Adding a system 
definition to observed data adds information: Systems define the context of 

observed flows and they allow for calculation of unobserved flows using 
mass balance.  

 

Nature of Uncertainty 

Because a model is only a simplified version of the real system, model parameters 

approximate the real properties of the system. A system can never be reproduced in 

full, this leads to observed non-deterministic behaviour. 

Approaches to deal with uncertainty 

In MFA, the consideration of uncertainty should enable the use of all available 

information about the system, reflecting the purpose of the MFA and the data quality. 

The first step for handling uncertainty in MFA is to define the elements of the system 

and the mathematical relationships between them in consideration of the mass 

balance principle. Especially uncertainty analysis methods focus on the system 

component. Data reconciliation is used to balance the system or Gauss’s law of error 

propagation is used to calculate uncertainties with mathematical operations.  
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Data 

 

Data form the foundation of MFAs. They represent observations of either stocks 
(at a given point in time) or flows (over a given time period).  

 

Nature of Uncertainty: 

Due to the fact that information often originates from different sources, collected 

data is unavoidably of varying quality. Statistical variations or estimates can lead to 

data uncertainty. Further data uncertainty reflects the incomplete knowledge about 

the true value of a parameter, e.g., due to imprecise measurements, (expert) 

estimations, and assumptions. 

Approaches to deal with uncertainty 

Data uncertainty is directly related to the nature of uncertainty. To deal with 

uncertain data appropriate functions need to be characterized. If sufficient empirical 

evidence is available, statistical parameter estimation techniques or goodness-of-fit 

tests can be applied. It is also important to convince data providers to include data 

uncertainty in their publications 

 

Models and Scenarios 

Models in this context are mathematical representations of material cycles. They 
reflect the system definition and the drivers of cycles such as population growth 

or technologies used. They are used to simulate MFA-based trends and 
developments Scenarios here are assumptions of plausible future cycles that 
are consistent with the mass balance principals and the assumed drivers. They 
can be used to make forecasts or to evaluate the effectiveness of alternative 
strategies.  

Nature of Uncertainty 

Assumptions and simplifications are made that lead to uncertainty regarding the 

validity of the model predictions for the real world situation. Usually, model equations 

must be solved numerically. The accuracy of these numerical solutions is usually 

much higher than uncertainty due to other sources, and can often be neglected. 

Approaches to deal with uncertainty 

Model predictions are always uncertain. MFA is a method for modelling, 

understanding and optimizing material flow systems. The material flow model should 

be balanced using all available information about model parameters, inputs, and 

outputs. The distinction of model parameters, model inputs, and model outputs 

enables statements regarding the ability of the model to produce results compatible 

with observations on the output flows (e.g., application of plausibility criteria). For 

exploratory MFA, sensitivity analysis is used to evaluate the effects of parameter 

variation on the model outputs. It forms the basis to identify critical model 

parameters, which may be in the focus of measures addressing the material flows in 

the system. 
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Uncertainty 

 

Uncertainty is inherent in all MFAs of historical or future cycles due to errors in system 
definitions and the data used. Approaches to uncertainty analysis aim at making uncertainties 
transparent and reducing them. They enable the modeller to make more robust assumptions 

and become aware of the model’s strengths and limitations.  

 

Indicators  

Indicators stands for quantitative measures that aim to reflect the status of 
complex systems. They are used to analyse and compare performance of 
businesses, sectors or economies across countries and to determine policy 

priorities.  

 

Uncertainty 

Indicators stand for quantitative measures that aim to reflect the status of complex 

systems (see MinFuture deliverable 3.2). They are used to analyse and compare 

performance of businesses, sectors or economies across countries and to determine 

policy priorities. Indicators are often quantified as possible output outcomes based 

on a set of uncertain input sensitivity analysis is applied to quantify the range of 

possible output outcomes (e.g. indicators), given a set of uncertain inputs. Data for 

the material flow outputs are less readily available and are more aggregated than 

the material flow input data. 

The calibrated model (satisfying agreement between data and model results has been 

achieved) is used to calculate the final result (material flows and associated 

uncertainty). Therefore indicators with an associated uncertainty can be calculated 

and it is possible to interpret uncertainty estimates for the resulting flows. 

 

Visualisation 

Visualisations here are different maps of complex systems. They can inform 
decision making in industry and government, by visualizing current status and 
historical trends, and potential future developments under different conditions. 
Visualization tools are developed to support the recording (monitoring), 
exploration (analysis), and explanation (interpretation) of information. 

 

Uncertainty 

Visualisation of uncertainty is possible on different ways. On the one hand it depends 

on the kind of visualisation of the MFA and the related results (e.g. Sankey, Pie, 

paired bar, maps, stacked column) and depends on the available data. Details about 

visualisation can be found in the MinFuture deliverable 3.4. 
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Strategy and Decision support 

Strategy support here has two aspects; (1) Supporting political strategies for 
raw materials that aim at reaching different goals, such as those of the 
Strategic Implementation Plan (SIP) of the European Innovation Partnership on 
Raw Materials, the Circular Economy Action Plan or the SDG’s. (2) Supporting 

strategies for improving and expanding the use of MFA in academia, 
governments and industry.  

Uncertainty 

Although studies of material flow systems can provide information, they also depend 

on information in their production process, and a lack of useful information can be a 

limiting factor to the level of detail provided in an analysis. More than that, the results 

are typically inherently limited in terms of accuracy and, thus, in their reliability in 

subsequent decision-making processes. 
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9   Conclusion 

Sources of uncertainty and approaches to deal with uncertainty are presented with 

the aim to assist material flow analysis in resources management. The systematic 

investigation of material flows and stock of anthropogenic systems through MFA 

allows a new view on the anthroposphere. MFA can link anthropogenic activities with 

resource consumption and environmental loadings, and is a powerful tool for policy 

decision support in the fields of resource efficiency, urban planning and 

environmental protection (Brunner and Rechberger 2016). As the problems 

addressed by MFA gain in importance now and will become even more important in 

the future, a rigorous consideration of uncertainty in material flow models is needed 

(Dzubur 2017). Given that material flow data originate from different sources and 

vary in quality, MFA is naturally confronted with uncertainty (Laner et al. 2015a). 

In MFA, the consideration of uncertainty should enable the use of all available 

information about the system, reflecting the purpose of the MFA and the data quality 

(Laner et al. 2014). The uncertainty of the data and the accuracy of the results are 

fundamental pieces of information for the evaluation process (Brunner and 

Rechberger 2016). As MFA concerns gathering, harmonizing and analysing data 

about physical stocks and flows from various different sources with varying quality, 

limitations of data are unavoidable in material flow studies (Chen and Graedel 2012; 

Dzubur 2017). The majority of data in MFA are empirical quantities with uncertainty 

arising from different sources (Laner et al. 2014). Uncertainty in science may relate 

to context definition, model structure, model inputs, parameter values, and others. 

In the following the various causes, source and types of uncertainty are summarized 

(details see chapter 4  ). 
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Scenario Uncertainty 
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If sufficient data are available, unknown flows including their uncertainties can be 

determined by error propagation. In some situations, however, problems will occur 

with statistical methods, if there are only one or few data available. Therefore, 

different approaches to treat uncertain data have been developed. The application of 

MFA software facilitates the implementation of these approaches and makes the 

additional workload negligible because of automation (Hedbrant and Sörme 2001). 

Numerous methods that deal with uncertainty exist. In conclusion, it can be said that 

there are a handful of simple and sophisticated approaches to include data 

uncertainty in MFA (Rechberger et al. 2014) – starting from data classification (e.g. 

asymmetric intervals) to uncertainty analysis (e.g. fuzzy set theory). Different 

approaches to deal with uncertainty are listed below (details see chapter 5  ). 

 
 

Data classification 
 

Asymmetric uncertainty intervals 

Symmetric intervals 

PEDIGREE Matrix 

Information defects 

Uncertainty analysis 

Gauss’s law of error propagation 

Data reconciliation 

STAN Software 

Mathematical material flow analysis 

Probabilistic material flow analysis 

Monte Carlo simulation 

Fuzzy set theory 

Sensitivity analysis 

Comparison of model structures 
 

 

The application of MFA software facilitates the implementation of some approaches 

and makes the additional workload negligible because of automation (Rechberger et 

al. 2014). Uncertainty is often characterized without the use of formal procedures, 

which impairs statements about the reliability of the MFA results based on uncertainty 

analysis. Therefore, consistent and transparent procedures for uncertainty 

characterization are imperative for uncertainty analysis in MFA. The systematic 

evaluation of uncertainty in MFA is important to understand the robustness of 

material flow estimates, independent of the approach used for expressing 

uncertainty. A crucial step in uncertainty analysis is the characterization of the data 

uncertainty because this step often lacks a sound empirical basis and is therefore 

partly dependent on expert estimates and assumptions (Laner et al. 2015a). 

MFA models can be used to serve different purposes in material management, such 

as monitoring systems, forecasting changes, or evaluating alternative strategies. 

Independent on the purpose, MFAs should include the different components of the 

‘MinFuture Pyramid’ (see Figure 1). These components are structured hierarchically; 

the robustness of the components at higher levels depends on the robustness of the 

ones at lower levels. As the robustness of the components at higher levels depends 

on the robustness of the ones at lower levels - also the uncertainty is linked to the 

different components. One key conclusion of the analysis in this report is that 

uncertainty assessment is not just something to be added after the completion of the 

modelling work. Instead uncertainty should be seen as a red thread throughout the 
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modelling study starting from the very beginning (Refsgaard et al. 2007). Therefore 

and based on Laner et al. (2014) a step-wise iterative procedure for handling 

uncertainty in MFA is presented. The full procedure relates to MFA with a focus on 

understanding mechanisms relevant for material flows in the system (details see 

chapter 1  and 7  ).  

MFA should now enter into an era where reporting uncertainty ranges of stocks and 

flows is mandatory. This would help to judge or gauge the reliability of MFA studies 

and also allow comparative studies for different regions with respect to data quality. 

Such analysis of MFA data is a requirement for progress in MFA, because we have to 

assess the level of data quality we need to produce reliable results (Rechberger et al. 

2014). 

In conclusion, it can be said that there are a handful of applicable approaches to 

consider data uncertainty in MFA. The employment of MFA software would facilitate 

the implementation of these approaches and reduce the additional workload because 

of automation to acceptable levels. However, such software support is not yet on the 

market (with the exemption of STAN2, which is limited to normally distributed values) 

and there is a strong necessity to fund such software development. Only then, MFA 

could enter into an era where reporting uncertainty ranges of stocks and flows is 

mandatory and state-of-the-art. This would help to judge or gauge the reliability of 

MFA studies and also allow comparative studies for different regions with respect to 

quality and quantity of data generation. 

 

  

                                           

2 STAN is a freeware, produced by TU Wien: www.stan2web.net  
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Table 18: Literature Review: Uncertainty in MFA (1/2) 

No. Author Publication Title 
System Boundary Materials 

Goal 
Uncertainty Mo-

dell  Geo. Thematic* Time goods substances assigned method(s) 

1 
(Allegrini 

et al. 
2014) 

Quantification of the 
resource recovery 

potential of municipal 
solid waste 

incineration bottom 
ashes 

- 
Bottom ash 
recovery 
facility 

- 
botto
m ash  

Fe, NFe 

To quantify recovery 
efficiencies, resource 

potential and optimisation 
potential; To offer a platform 

for future environmental 
assessments of incineration 

calculated 

Symmetric 
(standard 
deviation), 

STAN 

static 

2 

(Allesch 
and 

Brunner 
2016) 

Material Flow Analysis 
as a Tool to improve 
Waste Management 

Systems: The Case of 
Austria 

Austria 
Waste 

manageme
nt 

2012 waste 

Cd, C, Cr, 
Cu, Ni, Hg, 
N, P, Fe, 

Zn,  

To demonstrate how MFA can 
be used as tool to design 
WM-systems; To point out 

how MFA can be applied as a 
base for assessment 

calculated, 
estimated 

Combination 
(Laner) 

Static 

3 
(Andersen 

et al. 
2010) 

Mass balances and 
life-cycle inventory for 

a garden waste 
windrow composting 

plant (Aarhus, 
Denmark) 

- 

Composting 
plant 

(garden 
waste) 

2007 
garden 
waste 

C, N, P, Cr, 
Cd 

To offer a detailed LCI of the 
garden waste composting 
plant in Aarhus, Denmark 

calculated, 
estimated 

Symmetric 
(standard 
deviation), 

STAN 

static 

4 
(Andersen 

et al. 
2011) 

Mass balances and life 
cycle inventory of 

home composting of 
organic waste 

- 

Home 
composting 
(Food and 

garden 
waste) 

two-
month 

food 
and 

garden 
waste 

C, VS, N, K, 
P, Cd, Cr, 
Cu and Pb 

To provide a LCI as a starting 
point for making 

environmental assessment; 
To present the composition 

and assess the quality of the 
final compost product 

calculated, 
estimated 

Symmetric 
(standard 
deviation), 

STAN 

static 

5 
(Bader et 

al. 2011) 

Copper flows in 
buildings, 

infrastructures and 
mobiles: a dynamic 

model and its 
application to 
Switzerland 

Switzerland 
Whole 

economy 
2000 - Cu 

To determine the Cu flows 
and stocks; To evaluate 

which stocks have 
accumulated 

calculated, 

estimated 

Sensitivity 
analysis, 

Gauss’s Law 
of error 

propagation 

Dyna

mic 

6 
(Bajželj et 

al. 2013) 

Designing Climate 
Change Mitigation 
Plans That Add Up 

Global 
Whole 

economy 
2010 GHG   

To map the global green 
house gas emissions, and 

allocation to human activity 

calculated, 
estimated 

- Static 
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No. Author Publication Title 
System Boundary Materials 

Goal 
Uncertainty Mo-

dell  Geo. Thematic* Time goods substances assigned method(s) 

7 
(Buchner 

et al. 
2014) 

In-depth analysis of 
aluminium flows in 

Austria as a basis to 
increase resource 

efficiency 

Austria 
Whole 

economy 
2010 - Al 

To establish the Austrian Al 
budget for the year 2010 as 
a basis for anthropogenic 
resource management. 

calculated 

Asymmetric 
(Hedbrant 

and Sörme), 
STAN 

Static 

8 
(Buchner 

et al. 

2015a) 

Dynamic Material Flow 
Modelling: An Effort to 
Calibrate and Validate 

Aluminium Stocks and 
Flows in Austria 

Austria 
Whole 

economy 
1964-
2012 

- Al 

To develop a calibrated 
dynamic model of Austrian Al 
flows from 1964 to 2012 for 

determining in-use stocks 
and scrap flows 

calculated 

 Monte Carlo 
Simulation, 

Global 

sensitivity 
analysis, 

Dyna
mic 

9 
(Buchner 

et al. 
2015b) 

Future raw material 
supply: Opportunities 

and limits of 
aluminium recycling in 

Austria 

Austria 
Whole 

economy 
1964-
2050 

- Al 

To promote sustainable 
production by using 

secondary raw material from 
existing material stocks 

calculated 
Monte Carlo 
Simulation 

Dyna
mic 

10 
(Chancere

l et al. 
2009) 

Assessment of 
Precious Metal Flows 
During Preprocessing 

of Waste Electrical and 

Electronic Equipment 

- 

preprocessi
ng of 1,000 
kg of input 

WEEE 

- WEEE 
Ag, Au, Pd, 
Co, Al, Fe 

To quantify the flows of 
precious metals in and out of 
a pre-processing facility for 

WEEE; To determine 
implications for process 

optimization 

calculated, 
estimated 

Gauss’s Law 
of error 

propagation, 
Symmetric 
(standard 
deviation) 

Static 

11 

(Cooper 
and 

Carliell-
Marquet 
2013) 

A substance flow 
analysis of phosphorus 

in the UK food 
production and 

consumption system 

UK 

food 
production 

and 
consumptio

n 

2009 - P 

To determine the UK’s 
reliance on imported 

phosphorus; To identify areas 
of inefficient use and quantify 

losses within potentially 
recoverable waste streams 

calculated, 
estimated 

Asymmetric 
(Hedbrant 

and Sörme), 
symmetric 
(standard 
deviation), 

STAN 

Static 

12 

(Cullen 
and 

Allwood 
2010) 

The efficient use of 
energy: tracing the 

global flow of energy 
from fuel to service 

Global 
Whole 

economy 
2005 Energy - 

To calculate the improvement 
potential using an absolute 

physical basis, which is 
independent of drivers in 

today's market 

calculated, 
estimated 

Absence of 
any specific 
uncertainty 
analysis the 
values report 
are rounded 

Static 
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No. Author Publication Title 
System Boundary Materials 

Goal 
Uncertainty Mo-

dell  Geo. Thematic* Time goods substances assigned method(s) 

13 
(Cullen et 
al. 2012) 

Mapping the global 
flow of steel: from 

steelmaking to end-
use goods 

Global 
Whole 

economy 
2008 Steel - 

To collate the best available 
data for steel and trace the 
flow from liquid steel to final 

products, in an accessible 
visual form 

described 

Uncertainty 
mentioned 

but not 
calculated 

Static 

14 

(Cullen 
and 

Allwood 
2013) 

Mapping the global 
flow of aluminium: 

from liquid aluminium 
to end-use goods 

Global 
Whole 

economy 
2007 - Al 

To understand the potential 
for future recycling which is 

complex due to the problems 
of balancing the alloy mix 

described 

Uncertainty 
mentioned 

but not 
calculated, 
mass flows 
<0.1Mt not 

shown 

Static 

15 

(Danius 
and 

Burström 
2001) 

Regional material flow 
analysis and data 

uncertainties: can the 
results be trusted 

Västerås 
municipality 

Whole 
economy 

1995/
1998 

- N 

To discuss data uncertainties 
in MFA and analyse how 

these uncertainties affect the 
results and the possibilities to 

draw conclusions 

calculated 
Asymmetric 
(Hedbrant 

and Sörme) 
Static 

16 
(Egle et 
al. 2014) 

The Austrian P budget 
as a basis for resource 

optimization 
Austria 

Whole 
economy 

2004-
2008 

- P 
To develop a national P 

balance 
calculated 

Asymmetric 
(Hedbrant 

and Sörme), 
STAN 

Static 

17 
(Glo ̈ser et 

al. 2013) 

Dynamic Analysis of 
Global Copper Flows. 

Global Stocks, 
Postconsumer Material 

Flows, Recycling 
Indicators, and 

Uncertainty Evaluation 

Global 
Whole 

economy 
1910-
2010 

- Cu 

To provide such estimates 
through the development and 

use of a dynamic model of 
global copper flows which 
simulates mass flows over 

time 

calculated, 
estimated 

Symmetric 
(standard 
deviation), 
life time 

distribution, 
Stochastic 

(Monte Carlo) 
analysis 

Dyna
mic 

18 
(Graedel 

et al. 
2004)) 

Multilevel cycle of 
anthropogenic copper 

Regions/cou
ntries 

Whole 
economy 

1994 - Cu 

To capture at least 80% of 
the magnitude of each flow 

stream by evaluating 
countries which extract, 

fabricate, and/or use 
significant quantities of Cu 

described 
Detailed 

description of 
uncertainty 

Static 
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No. Author Publication Title 
System Boundary Materials 

Goal 
Uncertainty Mo-

dell  Geo. Thematic* Time goods substances assigned method(s) 

19 
(Guyonne

t et al. 
2015) 

Material flow analysis 
applied to rare earth 
elements in Europe 

European 
Union 

Whole 
economy 

2010 - 
Pr, Nd, Eu, 
Tb, Dy and 

Y 

To provide a systemic view of 
flows and stocks of certain 

REE along the value chain in 
the EU, taking into account 
both primary and secondary 

sources 

calculated 
Data 

reconciliation 
(Dubois) 

Static 

20 
(Hoender
daal et al. 

2013) 

Can a dysprosium 
shortage threaten 

green energy 
technologies? 

Global 
Green 
energy 

technology 

2010-
2050 

- Dy 

To look at current Dy use, 
future trends and dysprosium 

supply; To determine if Dy 
availability may hamper the 
growth of electric vehicles 

and wind mills 

described 
Detailed 

description of 
uncertainty 

Dyna
mic 

21 
(Klinglmai

r et al. 
2015) 

Phosphorus in 
Denmark: national 

and regional 
anthropogenic flows 

Denmark 
Whole 

economy 
2011 - P 

To assess anthropogenic P 
flows for Denmark, both at 

the scale of the entire 
country and its economy, and 
on a smaller, regional level 

calculated 

Asymmetric 
(Hedbrant 

and Sörme), 
STAN, 

Combination 
(Laner) 

Static 

22 
(Kovanda 

2017) 

Total residual output 
flows of the economy: 

Methodology and 
application in the case 
of the Czech Republic 

Czech 
Republic 

Whole 
economy 

1990-
2014 

Total 
residu

al 
output 

- 

To provide information on 
used data sources, analysing 

the total residual output 
flows compiled  

calculated, 
estimated 

Based on 
Kovanda, set 
probability 

EW-
MFA 

23 
(Kral et 

al. 2014) 

The Copper Balance of 
Cities 

Exploratory Insights 
into a European and 

an Asian City 

Vienna and 
Taiwan 

Whole 
economy 

2008 
and 
2009 

- Cu 

To develop a methodology to 
analyse and evaluate the Cu 

flows and stocks for two 
cities; To discuss the 

differences between on the 
basis of selected indicators 

calculated, 
estimated 

Asymmetric 
(Hedbrant 

and Sörme), 
symmetric 
(standard 
deviation), 

STAN 

Static 

24 
(Laner et 

al. 
2015a) 

Applying fuzzy and 

probabilistic 
uncertainty concepts 
to the material flow 
analysis of palladium 

in Austria 

Austria 
Whole 

economy 
2011 - Pd 

To investigate the effect of a 
rigorous uncertainty analysis 

on the evaluation of the 
Austrian Pd resource system 

calculated 
STAN and 

fuzzy model 
Static 
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No. Author Publication Title 
System Boundary Materials 

Goal 
Uncertainty Mo-

dell  Geo. Thematic* Time goods substances assigned method(s) 

25 
(Morf et 
al. 2007) 

Metals, non-metals 
and PCB in electrical 

and electronic waste – 
Actual levels in 

Switzerland 

- 
WEEE 

treatment 
plant  

3-day 
operati

on 
period 

- 

Al, Sb, Pb, 
Cd, Cr, Fe, 
Cu, Ni, Hg, 
Zn, Sn, Cl, 
P, PCB sum 

To characterize the actual 
chemical composition and 

contents of specific pollutants 
of WEEE 

calculated 

Gauss’s Law 
of error 

propagation, 
Symmetric 
(standard 

deviation) 

Static 

26 
(Morf et 
al. 2013) 

Precious metals and 
rare earth elements in 
municipal solid waste 
– Sources and fate in 
a Swiss incineration 

plant 

- 
MSW 

incinerator 
2010 - 

Ag, Au, Ba, 
Be, Bi, Co, 
Ga, Gd, Ge, 
Hf, In, Li, 

Mo, Nb, Nd, 
Pb, Pr, Pt, 

Rb, Rh, Ru, 
Sc, Se, Sr, 
Ta, Te, Tl, 
V, W, Y, Zr 

To characterize of the 
elemental composition of 
MSW and the transfer into 
the outputs of the MSWI 

calculated 

Gauss’s Law 
of error 

propagation, 
Symmetric 
(standard 
deviation) 

Static 

27 
(Ott and 
Rechberg
er 2012) 

The European 
phosphorus balance 

EU 
Whole 

economy 
1 year - P 

To develop an SFA model for 
the EU15 and adopt it to the 
special requirements for an 

EU15 wide analysis 

calculated, 
estimated 

Symmetric 
(standard 
deviation), 

STAN 

Static 

28 

(Rechberg
er and 
Graedel 
2002) 

The contemporary 
European copper 
cycle: statistical 
entropy analysis 

Europe 
Whole 

economy 
1994 - Cu 

To introduce an alternative 
and useful method for 

evaluating material flows 
only. 

described 
Detailed 

description of 
uncertainty 

Static 

29 
(Reck et 
al. 2010) 

Global stainless steel 
cycle exemplifies 

China’s rise to metal 
dominance 

China 
Whole 

economy 

2000 
and 
2005 

stainle
ss 

steel 
- 

To characterize at the global 
level the cycle for stainless 

steel (or any alloy); To 
analyse the dynamics of a 
metal market during the 

early 20th century 

calculated, 
estimated 

Gauss’s Law 
of error 

propagation, 
STAN 

Static 

30 

(Schulze 
and 

Buchert 
2016) 

 Estimates of global 
REE recycling 

potentials from NdFeB 
magnet material  

Global 
Green 
energy 

technology 

2020-
2030 

- NdFeB 

To give an estimate of global 
annual REE recycling 

potentials from pre-and post-
consumer magnet material in 

years 2020-30 

described 
Reflection of 

data 
uncertainty  

Dyna
mic 
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No. Author Publication Title 
System Boundary Materials 

Goal 
Uncertainty Mo-

dell  Geo. Thematic* Time goods substances assigned method(s) 

31 
(Spatari 

et al. 

2002) 

The contemporary 
European copper 

cycle: 1 year stocks 
and flows 

Europe 
Whole 

economy 
1994 - Cu 

To examine the quantity of 
Cu used in the 1990s; To 

estimate the amount leaving 
the economy as discarded 

waste, the amount recovered 
or stored 

no no Static 

32 
(Spatari 

et al. 
2003) 

The contemporary 
European zinc cycle: 1 
year stocks and flows 

Europe 
Whole 

economy 
1994 - Zn 

To examine the quantity of 
Zn used in the 1990s; To 

estimate the amount leaving 
the economy as discarded 

waste, the amount recovered 
or stored 

no no Static 

33 

(Stanisavl
jevic and 
Brunner 
2014) 

Combination of 
material flow analysis 
and substance flow 
analysis: A powerful 
approach for decision 

support in waste 
management 

Novi Sad 
MSW 

Managemen
t 

1 year MSW C, Cd 

To demonstrate how a 
combination of MFA, SFA and 

scenario modelling can be 
used as a base for goal-

oriented evaluation 

calculated, 
estimated 

STAN Static 

34 
(Tonini et 
al. 2014) 

Bioenergy, material, 
and nutrients recovery 

from household 
waste: Advanced 

material, substance, 
energy, and cost flow 
analysis of a waste 

refinery process 

- 
MSW 

Managemen
t (1,000 kg) 

- MSW 
C, Cfoss, N, 

P, K, Fe, 
and Al  

To characterize the outputs 
of a pilotscale waste refinery 
process; To development a 
mathematical optimization 

model to evaluate the 
potential for recovery 

calculated 

Symmetric 
(standard 
deviation), 

STAN 

Static 

35 
(Van 

Beers et 
al. 2005) 

The application of 
material flow analysis 
for the evaluation of 

the recovery potential 

of secondary metals in 
Australia 

Australia 
Whole 

economy 
one 
year 

- Cu, Zn 

To discuss the potential and 
availability of secondary 
metals for recovery in 
Australia; To illustrate 

research results and case-
study examples for Cu and 

Zn 

 estimated 
Sensitivity 
analysis 

Static 
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36 
(Van 

Eygen et 
al. 2017) 

Comprehensive 
analysis and 

quantification of 
national plastic flows: 
The case of Austria 

Austria 
Whole 

economy 
2010 plastic - 

To connect the sources (e.g. 
imports), the pathways (e.g. 

transfer coefficients) and 
intermediate (e.g. 

consumption) and final sinks 
of materials  

calculated 
Combination 

(Laner) 
Static 

37 

(Vyzinkar
ova and 
Brunner 
2013) 

Substance Flow 
Analysis of Wastes 

Containing 
Polybrominated 
Diphenyl Ethers 

Vienna 
Whole 

economy 
2010 - 

cPentaBDE, 
cOctaBDE 

To identify sources, 
pathways, and sinks; To 

determine the fractions of 
cPentaBDE and cOctaBDE 

that reach final sinks 

calculated, 
estimated 

Symmetric 
(standard 
deviation), 

STAN 

Static 

38 
(Zhang et 
al. 2008) 

Implication of heavy 
metals distribution for 

a municipal solid 
waste management 

system — a case 
study in Shanghai 

Shanghai 
MSW 

Managemen
t 

Sampli
ng 

(Octob

er 
2004 

to 
Septe
mber 
2005) 

- 
Pa, Wo, Pu, 
Gl, Pl, Te, 

Me, Cd 

To analyse the occurrence 
and distribution of heavy 

metals in MSW and to discuss 
their implications for 

integrated MSW management 
system in mega-cities 

calculated 
Symmetric 
(standard 
deviation), 

Static 

39 
(Zoboli et 
al. 2016) 

Added Values of Time 
Series in Material Flow 
Analysis: The Austrian 

Phosphorus Budget 
from 1990 to 2011 

Austria 
Whole 

economy 
1990-
2011 

- P 

To identify and assess the 
extent of the temporal 

changes that occurred in the 
system during the last two 

decades  

calculated 
Combination 

(Laner) 
Static 
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Table 19: Literature Review: Uncertainty in MFA (2/2) 

No. Author(s) Publication Summary 

1 
(Allegrini et 
al. 2014) 

Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus 
on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from 
waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, 
detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of 
Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery 
facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was 
determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were 
quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, 
with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable no recovered resource 
potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were 
detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment 
in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these 
results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting 
initiatives for these elements. 

2 
(Allesch et al. 

2016) 

This article reviews, categorizes, and evaluates the objectives, means, and results of the application of material flow analysis (MFA) in waste 
management. It identifies those areas where MFA methodologies are most successful in supporting waste management decisions. The focus 
of this review is on the distinction between MFA on the level of goods and on the level of substances. Based on 83 reviewed studies, 
potentials, strengths, and weaknesses are investigated for the two levels of MFA when applied for analysis, evaluation, and improvement of 
waste management systems. The differences are discussed in view of effectiveness, applicability, and data availability. The results show that 
MFA on the level of goods are instrumental for understanding how waste management systems function, facilitating the connections of 
stakeholders, authorities, and waste management companies. The substance level is essential to assess qualitative aspects regarding 
resources and environment. Knowledge about the transformation, transport, and storage of valuable and hazardous substances forms the 
base for identifying both resource potentials and risks for human health and the environment. The results of this review encourage the 
application of MFA on both levels of goods and substances for decision making in waste management. Because of the mass balance principle, 
this combination has proven to be a powerful tool for comprehensively assessing if a chosen system reaches designated waste management 
goals. 

3 
(Andersen et 

al. 2010) 

A comprehensive life-cycle inventory of all consumptions and emissions of environmental relevance was made for the windrow composting 
plant treating garden waste in Aarhus (Denmark). The flows of materials and substances within the facility were balanced using the mass-
balance model STAN. The overall fuel and electricity use at the facility (3.04 L diesel Mg 1 wet waste (ww) and 0.2kWh Mg 1 ww) was low 
whereas the emissions of CH4 and N2O from the windrows (2.4 0.5 kg CH4–C Mg 1ww and 0.06 0.03 kg N2O–N Mg 1 ww) were relatively 
high compared to data reported in similar studies. The loss of carbon during the 14-month-long composting was 56%. CH4 made up 2.1% of 
the C lost. Loss of nitrogen-containing compounds was identified as the most sensible and uncertain parameter and could be relevant for 
global warming (N2O emissions), acidification (NH3 emissions), and eutrophication (NH3 and NO3 emissions). The compost produced had a 
very low content of heavy metals and was suitable for use in gardens and/or 
agriculture. 
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4 
(Andersen et 

al. 2011) 

A comprehensive experimental setup with six single-family home composting units was monitore+U11d during 1 year. The composting units 
were fed with 2.6–3.5 kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental 
relevance were addressed and a full life-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel 
was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of 
carbon (C) during composting was 63–77% in the six composting units. The carbon dioxide (CO2) and methane (CH4) emissions made up 
51–95% and 0.3–3.9% respectively of the lost C. The total loss of nitrogen (N) during composting was 51–68% and the nitrous oxide (N2O) 
made up 2.8–6.3% of this loss. The NH3 losses were very uncertain but small. The amount of leachate was 130 L Mg 1 wet waste (ww) and 
the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The 
loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3–0.6% of the total loss of C and 1.3–
3.0% of the total emitted N). Also the compost composition was within the typical ranges reported previously for home composting. The level 
of heavy metals in the compost produced was below all threshold values and the compost was thus suitable for use in private gardens. 

5 
(Bader et al. 

2011) 

During the last century, the consumption of materials for human needs increased by several orders of magnitude, even for non-renewable 
materials such as metals. Some data on annual consumption (input) and recycling/waste (output) can often be found in the federal statistics, 
but a clear picture of the main flows is missing. A dynamic material flow model is developed for the example of copper in Switzerland in order 
to simulate the relevant copper flows and stocks over the last 150 years. The model is calibrated using data from statistical and published 
sources as well as from interviews and measurements. A simulation of the current state (2000) is compared with data from other studies. The 
results show that Swiss consumption and losses are both high, at a level of about 8 and 2 kg/ (cap year), respectively, or about three times 
higher than the world average. The model gives an understanding of the flows and stocks and their interdependencies as a function of time. 
This is crucial for materials whose consumption dynamics are characterised by long lifetimes and hence for relating the current output to the 
input of the whole past. The model allows a comprehensive discussion of possible measures to reduce resource use and losses to the 
environment. While increasing the recycling reduces losses to landfill, only copper substitution can reduce the different losses to the 
environment, although with a time delay of the order of a lifetime. 

6 
(Bajze ̌lj et al. 

2013) 

Mitigation plans to combat climate change depend on the combined implementation of many abatement options, but the options interact. 
Published anthropogenic emissions inventories are disaggregated by gas, sector, country, or final energy form. This allows the assessment of 
novel energy supply options, but is insufficient for understanding how options for efficiency and demand reduction interact. A consistent 
framework for understanding the drivers of emissions is therefore developed, with a set of seven complete inventories reflecting all technical 
options for mitigation connected through lossless allocation matrices. The required data set is compiled and calculated from a wide range of 
industry, government, and academic reports. The framework is used to create a global Sankey diagram to relate human demand for services 
to anthropogenic emissions. The application of this framework is demonstrated through a prediction of per-capita emissions based on service 
demand in different countries, and through an example showing how the “technical potentials” of a set of separate mitigation options should 
be combined. 

7 
(Buchner et 
al. 2014) 

Based on the method of material flow analysis (MFA), a static model of Austrian aluminium (Al) flows in 2010 was developed. Extensive data 
research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al 
resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The 
model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11 ± 3.1 kg yr−1 cap−1. The total “in-use” Al stock was 
determined using a Bottom-Up approach, which produced an estimate of 260 kg Al cap−1. Approximately 7 ± 1 kg of Al yr−1 cap−1 of old 
scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, 
approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of 
Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign 
scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs 
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between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the 
national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future. 

8 
(Buchner et 
al. 2015) 

A calibrated and validated dynamic material flow model of Austrian aluminium (Al) stocks and flows between 1964 and 2012 was developed. 
Calibration and extensive plausibility testing was performed to illustrate how the quality of dynamic material flow analysis can be improved on 
the basis of the consideration of independent Bottom-Up estimates. According to the model, total Austrian in-use Al stocks reached a level of 
360 kg/capita in 2012, with buildings (45%) and transport applications (32%) being the major in-use stocks. Old scrap generation (including 
export of end-of-life vehicles) amounted to 12.5 kg/capita in 2012, still being on the increase, while Al final demand has remained rather 
constant at around 25 kg/capita in the past few years. The application of global sensitivity analysis showed that only small parts of the total 
variance of old scrap generation could be explained by the variation of single parameters, emphasizing the need for comprehensive sensitivity 
analysis tools accounting for interaction between parameters and time-delay effects in dynamic material flow models. Overall, it was possible 
to generate a detailed understanding of the evolution of Al stocks and flows in Austria, including plausibility evaluations of the results. Such 
models constitute a reliable basis for evaluating future recycling potentials, in particular with respect to application-specific qualities of current 
and future national Al scrap generation and utilization. 

9 
(Buchner et 
al. 2015) 

In order to promote sustainable production by using secondary raw material from existing material stocks, complementary to primary raw 
material, information about the future availability of secondary resources constitutes a prerequisite. In this study, a dynamic material flow 
model of historic aluminium (Al) flows in Austria is combined with forecasts on future Al consumption to estimate the development of old 
scrap generation and in-use stocks until 2050. In-use stocks are estimated to increase by 60 % to 515 kg/cap. by 2050 assuming a scenario 
of moderate economic growth. Old scrap generation in 2050 would thereby more than double (up to 30 kg/cap.) in comparison to the 2010 
amounts. Despite this substantial increase in old scrap generation, industrial self-supply from old scrap will probably not exceed 20 %, and 
final consumption self-supply of Al will not exceed 40 % given present conditions. Opportunities and limits of increasing self-supply through 
higher collection rates and lower scrap export levels are investigated in this study as the European Raw Material Initiative considers enhanced 
recycling to be a key measure to ensure future resource supply. Based on these analyses, a self-sustaining Al supply from post-consumer Al is 
not expected if current trends of Al usage continue. Therefore, comprehensive resource policy should be based on a profound understanding 
of the availability of primary and secondary resources potentials and their dynamics. 

10 
(Chancerel et 

al. 2009) 

The manufacturing of electronic and electrical equipment (EEE) is a major demand sector for precious and special metals with a strong growth 
potential. Both precious and special metals are contained in complex components with only small concentrations per unit. After the use-
phase, waste electronic and electrical equipment (WEEE) is an important source of these “trace elements.” Their recycling requires 
appropriate processes in order to cope with the hazardous substances contained pinweed and to recover efficiently the valuable materials. 
Although state-of-the-art pre-processing facilities are optimized for recovering mass-relevant materials such as iron and copper, trace 
elements are often lost. The objective of this article is to show how a substance flow analysis (SFA) on a process level can be used for a 
holistic approach, covering technical improvement at process scale, optimization of product life cycles, and contributing to knowledge on 
economy-wide material cycles. An SFA in a full-scale pre-processing facility shows that only 11.5 wt.% of the silver and 25.6 wt.% of the gold 
and of the palladium reach output fractions from which they may potentially be recovered. For copper this percentage is 60. Considering the 
environmental rucksack of precious metals, an improvement of the recycling chain would significantly contribute to the optimization of the 
product life cycle impact of EEE and to ensuring the long-term supply of precious metals. 



 

MFA – Uncertainty - Deliverable 3.3 77 

No. Author(s) Publication Summary 

11 
(Cooper et al. 

2013) 

Phosphorus (P) is both an essential resource, required for plant growth and food production, and a costly pollutant, capable of causing 
eutrophication in water courses. The possibility of future phosphorus scarcity and the requirement to improve the quality of UK waters 
necessitates the development of a UK phosphorus management system, which increases use efficiency, reduces losses and recycles wastes 
more effectively. A vital first step towards creating such a system is to conduct a substance flow analysis (SFA), which maps and quantifies 
the relevant stocks and flows, allowing specific measures to be implemented that target identified losses and areas of inefficient resource use. 
This paper presents the results of a SFA for phosphorus in the UK, focussing in particular on the food production and consumption system for 
the year 2009. The SFA results suggest that the UK population consumed around 31.0 kt P in 2009, which was largely achieved by importing 
food, feed and fertilisers, with net imports totalling 113.5 kt P. Imported fertilisers accounted for 56% of the total imports, containing 77.5 kt 
P. The largest losses within the systems were those to water, estimated at around 41.5 kt P/yr, and soil accumulations are estimated at 37.5 
kt P/yr. The efficiency of UK crop production is estimated at 81%, whereas the efficiency of producing animal products is only 16.5%. 
Wastewater treatment works (WwTW) received around 55.0 kt P within wastewater, with 57% being removed in sewage sludge. The 23.5 kt P 
discharged within final effluent represented the largest loss to UK waters. Around 71% of the sludge was recycled to land, containing 22.5 kt 
P, although the rate of application was around 5× higher than the uptake rate for crops, demonstrating the challenges of effectively recycling 
bulky wastes. Existing measures aimed at tackling water pollution and climate change have acted to improve P management in the UK, 
although additional measures focussing particularly on P as a resource are required. The results from this analysis suggest focussing on P 
removal and recovery at WwTW, as well as developing more effective methods for recycling bulky wastes such as animal manure, food waste 
and sewage sludge in order to reduce soil accumulations and replace imported fertilisers. Conducting additional SFAs at smaller scales may be 
necessary in order to develop more specific measures, such as regional recycling strategies. 

12 
(Cullen et al. 

2010a) 

The efficient use of energy is a key component of current efforts to reduce carbon emissions. There are two factors which are important when 
assessing the potential gains from energy efficiency technologies: the scale of energy flow and the technical potential for improvement. 
However, most efficiency analyses consider only the potential gains from known efficiency technologies, while ignoring the complex flow of 
energy through the chains of conversion devices. In response, this paper traces the global flow of energy, from fuels through to the final 
services, and focuses on the technical conversion devices and passive systems in each energy chain. By mapping the scale and complexity of 

global energy flow, the technical areas which are likely to deliver the largest efficiency gains can be identified. The result is a more consistent 
basis for directing future research and policy decisions in the area of energy efficiency. 

13 
(Cullen et al. 

2013a) 

Our society is addicted to steel. Global demand for steel has risen to 1.4 billion tonnes a year and is set to at least double by 2050, while the 
steel industry generates nearly a 10th of the world’s energy related CO2 emissions. Meeting our 2050 climate change targets would require a 
75% reduction in CO2 emissions for every tonne of steel produced and finding credible solutions is proving a challenge. The starting point for 
understanding the environmental impacts of steel production is to accurately map the global steel supply chain and identify the biggest steel 
flows where actions can be directed to deliver the largest impact. In this paper we present a map of global steel, which for the first time 
traces steel flows from steelmaking, through casting, forming, and rolling, to the fabrication of final goods. The diagram reveals the relative 
scale of steel flows and shows where efforts to improve energy and material efficiency should be focused. 

14 
(Cullen et al. 

2013b) 

Demand for aluminium in final products has increased 30-fold since 1950 to 45 million tonnes per year, with forecasts predicting this 
exceptional growth to continue so that demand will reach 2−3 times today’s levels by 2050. Aluminium production uses 3.5% of global 
electricity and causes 1% of global CO2 emissions, while meeting a 50% cut in emissions by 2050 against growing demand would require at 
least a 75% reduction in CO2 emissions per tonne of aluminium producede a challenging prospect. In this paper we trace the global flows of 
aluminium from liquid metal to final products, revealing for the first time a complete map of the aluminium system and providing a basis for 
future study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also draws attention to two key issues. 
First, around half of all liquid aluminium (∼39 Mt) produced each year never reaches a final product, and a detailed discussion of these high 

yield losses shows significant opportunities for improvement. Second, aluminium recycling, which avoids the high energy costs and emissions 
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of electrolysis, requires signification “dilution” (∼ 8 Mt) and “cascade” (∼ 6 Mt) flows of higher aluminium grades to make up for the shortfall 

in scrap supply and to obtain the desired alloy mix, increasing the energy required for recycling. 

15 
(Danius et al. 

2001) 

Regional material flow analysis (MFA) has been proposed to be a useful tool for priority setting and follow-up in environmental management. 
However, data that are used in regional MFA are usually connected to varying degrees of uncertainties. This paper analyses and discusses 
how data uncertainties affect the results from a regional MFA study of nitrogen flows in a Swedish municipality. It is argued that the intended 
use of MFA is associated with considerable difficulties. 

16 
(Egle et al. 

2014) 

Phosphorus (P) is a finite and non-substitutable resource that is essential to sustaining high levels of agricultural productivity but is also 
responsible for environmental problems, e.g., eutrophication. Based on the methodology of Material Flow Analysis, this study attempts to 
quantify all relevant flows and stocks of phosphorus (P) in Austria, with a special focus on waste and wastewater management. The system is 
modelled with the software STAN, which considers data uncertainty and applies data reconciliation and error propagation. The main novelty of 
this work lies in the high level of detail at which flows and stocks have been quantified to achieve a deeper understanding of the system and 
to provide a sound basis for the evaluation of various management options. The budget confirms on the one hand the dependence of mineral 
P fertilizer application (2 kg cap−1 yr−1), but it highlights on the other hand considerable unexploited potential for improvement. For 
example, municipal sewage sludge (0.75 kg cap−1 yr−1) and meat and bone meal (0.65 kg cap−1 yr−1) could potentially substitute 70% of 
the total applied mineral P fertilizers. However, recycling rates are low for several P flows (e.g., 27% of municipal sewage sludge; 3% of meat 
and bone meal). Therefore, Austria is building up a remarkable P stock (2.1 kg P cap−1 yr−1), mainly due to accumulation in landfills (1.1 kg 
P cap−1 yr−1) and agricultural soils (0.48 kg P cap−1 yr−1). 

17 
(Glöser et al. 

2013 

We present a dynamic model of global copper stocks and flows which allows a detailed analysis of recycling efficiencies, copper stocks in use, 
and dissipated and landfilled copper. The model is based on historical mining and refined copper production data (1910−2010) enhanced by a 
unique data set of recent global semi finished goods production and copper end-use sectors provided by the copper industry. To enable the 
consistency of the simulated copper life cycle in terms of a closed mass balance, particularly the matching of recycled metal flows to reported 
historical annual production data, a method was developed to estimate the yearly global collection rates of end-of-life (postconsumer) scrap. 
Based on this method, we provide estimates of 8 different recycling indicators over time. The main indicator for the efficiency of global copper 
recycling from end-of-life (EoL) scrap the EoL recycling rate  was estimated to be 45% on average, ± 5% (one standard deviation) due to 
uncertainty and variability over time in the period 2000−2010. As uncertainties of specific input data mainly concerning assumptions on end-

use lifetimes and their distribution are high, a sensitivity analysis with regard to the effect of uncertainties in the input data on the calculated 
recycling indicators was performed. The sensitivity analysis included a stochastic (Monte Carlo) uncertainty evaluation with 105 simulation 
runs. 

18 
(Gradel et al. 

2004) 

A comprehensive contemporary cycle for stocks and flows of copper is characterized and presented, incorporating information on extraction, 
processing, fabrication and manufacturing, use, discard, recycling, final disposal, and dissipation. The analysis is performed on an annual 
basis, ca. 1994, at three discrete governmental unit levels−56 countries or country groups that together comprise essentially all global 
anthropogenic copper stocks and flows, nine world regions, and the planet as a whole. Cycles for all of these are presented and discussed, 
and a “best estimate” global copper cycle is constructed to resolve aggregation discrepancies. Among the most interesting results are (1) 
transformation rates and recycling rates in apparently similar national economies differ by factors of two or more (country level); (2) the 
discard flows that have the greatest potential for copper recycling are those with low magnitude flows but high copper concentrations 
electronics, electrical equipment, and vehicles (regional level); (3) worldwide, about 53% of the copper that was discarded in various forms 
was recovered and reused or recycled (global level); (4) the highest rate of transfer of discarded copper to repositories is into landfills, but 
the annual amount of copper deposited in mine tailings is nearly as high (global level); and (5) nearly 30% of copper mining occurred merely 
to replace copper that was discarded. The results provide a framework for similar studies of other anthropogenic resource cycles as well as a 
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basis for supplementary studies in resource stocks, industrial resource utilization, waste management, industrial economics, and 
environmental impacts. 

19 
(Guyonnet et 

al. 2015) 

This paper explores flows and stocks, at the scale of the European Union, of certain rare earth elements (REEs; Pr, Nd, Eu, Tb, Dy and Y) 
which are associated with products that are important for the decarbonisation of the energy sector and that also have strong recycling 
potential. Material flow analyses were performed considering the various steps along the value chain (separation of rare earth oxides, 
manufacture of products, etc.) and including the lithosphere as a potential stock (potential geological resources). Results provide estimates of 
flows of rare earths into use, in-use stocks and waste streams. Flows into use of, e.g., Tb in fluorescent lamp phosphors, Nd and Dy in 
permanent magnets and Nd in battery applications were estimated, for selected reference year 2010, as 35, 1230, 230 and 120 tons 
respectively. The proposed Sankey diagrams illustrate the strong imbalance of flows of permanent magnet REEs along the value chain, with 
Europe relying largely on the import of finished products (magnets and applications). It is estimated that around 2020, the amounts of Tb in 
fluorescent lamps and Nd in permanent magnets recycled each year in Europe, could be on the order of 10 tons for Tb and between 170 and 
230 tons for Nd.  

20 
(Hoenderdaal 
et al. 2012) 

Dysprosium, one of the various rare earth elements, is currently for more than 99% mined in China. As China is reducing its exports, new 
mining projects outside of China are needed to sustain supply and meet future demands. Dysprosium is mainly used in permanent magnets to 
retain the magnet’s strength at elevated temperatures. Therefore, the use of dysprosium doped permanent magnets is preferred in electric 
vehicles and direct-drive wind turbines. Based on four scenarios it could be shown that dysprosium demand will probably outstrip supply in 
the short term (up to 2020). Although new mines are being developed, it takes several years for them to become productive. For the long 
term it is expected that enough dysprosium oxide is available in the earth crust (which is economically feasible to mine with current 
dysprosium prices) to fulfil the projected demand of dysprosium up to 2050. Recycling of dysprosium can further secure dysprosium supply in 
the long term by reducing primary dysprosium use by 35% in 2050. Electric vehicles are likely to play a dominant role in future increases in 
dysprosium demand. Even with the limited market share in 2011, electric vehicles already contribute to 20% of dysprosium use.  

21 
(Klinglmair et 

al. 2015) 

Substance flow analyses (SFA) of phosphorus (P) have been examined on a national or supra-national level in various recent studies. SFA 
studies of P on the country scale or larger can have limited informative value; large differences between P budgets exist within countries and 
are easily obscured by country-wide average values. To quantify and evaluate these imbalances we integrated a country-scale and regional-
scale model of the Danish anthropogenic P flows and stocks. We examine three spatial regions with regard to agriculture, as the main driver 

for P use, and waste management, the crucial sector for P recovery. The regions are characterised by their differences in agricultural practice, 
population and industrial density. We show considerable variation in P flows within the country. First, these are driven by agriculture, with 
mineral fertiliser inputs varying between 3 and 5 kg ha−1 yr−1, and animal feedstuff inputs between 5 and 19 kg ha−1 yr−1. We identified 
surpluses especially in areas with a larger proportion of animal husbandry, owing to additional application of manure in excess of crop P 
demand. However, redistribution of the large amounts of P in manure is not feasible owing to transport limitations. Second, waste 
management, closely linked to population and industrial density is the driver behind differences in recoverable P flows. Current amounts of 
potentially recoverable P cannot change the reliance on primary P. The most immediate P re-use potential exists in the areas around the 
eastern urban agglomerations, from more complete recovery of sewage sludge (with unrecovered P amounts of up to 33% of P in current 
mineral fertiliser imports) and the biowaste fraction in municipal solid waste currently not collected separately (24% of P in current mineral 
fertiliser imports), since this region shows both the highest proportion of crop production and fertiliser use and lowest soil P budget. 
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22 
(Kovanda et 

al. 2017) 

The article goes beyond standard emission and waste statistics and elaborates upon total residual output flows of economies based on 
economy-wide material flow accounting and analysis (EW-MFA). This concept allows for evaluation of total environmental pressures related to 
material output flows and assessing the potential trade-offs if environmental policies are more successful in some fields than in others. We 
provide basic information on EW-MFA and its output accounts and indicators and describe in detail the methodology of their compilation. The 
methodology is then applied to the Czech Republic for the period 1990–2014. All major components of residual output flows, i.e. emission and 
waste flow, dissipative use flow and unused domestic extraction accounts, as well as domestic processed output (DPO) and total domestic 
output (TDO) indicators, went down in the monitored period. We identified a few major driving forces behind this decrease, including changes 
in the structure of the economy, changes in the structure of TPES, technological change, advances in waste management, and changes in the 
agricultural system of the Czech Republic. The results further indicate that another decrease in DPO and TDO indicators is at stake, as Czech 
economic policies are aimed at maintaining the current relatively high proportion of manufacturing industries in the economy. 

23 
(Kral et al. 

2014) 

Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand 
accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving 
resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow 
studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). 
Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in 
the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per 
year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash 
from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions 
are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental 
for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for 
directing no recyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city 
benchmarking if sufficient data are available. 

24 
(Laner et al. 

2015) 

Material flow analysis (MFA) is a widely applied tool to investigate resource and recycling systems of metals and minerals. Owing to data 
limitations and restricted system understanding, MFA results are inherently uncertain. To demonstrate the systematic implementation of 
uncertainty analysis in MFA, two mathematical concepts for the quantification of uncertainties were applied to Austrian palladium (Pd) 
resource flows and evaluated: (1) uncertainty ranges expressed by fuzzy sets and (2) uncertainty ranges defined by normal distributions 
given as mean values and standard deviations. Whereas normal distributions represent the traditional approach for quantifying uncertainties 
in MFA, fuzzy sets may offer additional benefits in relation to uncertainty quantification in cases of scarce information. With respect to the Pd 
case study, the fuzzy representation of uncertain quantities is more consistent with the actual data availability in cases of incomplete 
databases, and fuzzy sets serve to highlight the effect of uncertainty on resource efficiency indicators derived from the MFA results. For both 
approaches, data reconciliation procedures offer the potential to reduce uncertainty and evaluate the plausibility of the model results. With 
respect to Pd resource management, improved formal collection of end-of-life (EOL) consumer products is identified as a key factor in 
increasing the recycling efficiency. In particular, the partial export of EOL vehicles represents a substantial loss of Pd from the Austrian 
resource system, whereas approximately 70% of the Pd in the EOL consumer products is recovered in waste management. In conclusion, 
systematic uncertainty analysis is an integral part of MFA required to provide robust decision support in resource management. 
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25 
(Morf et al. 

2007) 

The chemical composition of waste of small electrical and electronic equipment (s-WEEE), a rapidly growing waste stream, was determined for 
selected metals (Cu, Sb, Hg etc.) and non-metals (Cl, Br, P) and PCBs. During a 3-day experiment, all output products and the s-WEEE input 
mass flows in a WEEE recycling plant were measured. Only output products were sampled and analysed. Material balances were established, 
applying substance flow analysis (SFA). Transfer coefficients for the selected substances were also determined. The results demonstrate the 
capability of SFA to determine the composition of the highly heterogeneous WEEE for most substances with rather low uncertainty (2r 6 ± 
30%). The results confirm the growing importance of s-WEEE regarding secondary resource metals and potential toxic substances. Nowadays, 
the thirty times smaller s-WEEE turns over larger flows for many substances, compared to municipal solid waste. Transfer coefficient results 
serve to evaluate the separation efficiency of the recycling process and confirm – with the exception of PCB and Hg – the limitation of hand-
sorting and mechanical processing to separate pollutants (Cd, Pb, etc.) out of reusable fractions. Regularly applied SFA would serve to assess 
the efficacy of legislative, organizational and technical measures on the WEEE. 

26 
(Morf et al. 

2013) 

In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large 
extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable 
metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) 
and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements 
including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a 
solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re concept. The SFA allowed the 
determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show 
that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the 
valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As 
the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study 
are essential for the improvement of resource recovery in the Thermo- Re process. 

27 
(Ott et al. 

2012) 

Phosphorus (P) is considered a potentially critical resource because reserves are limited; it is required by all creatures, and it cannot be 
substituted. In this paper a substance flow analysis of phosphorus for the former 15 member states of the European Community (EU15) is 
presented. In order to consider the heterogeneity of the database with regard to quantity and quality all data are considered with uncertainty 
ranges. Error propagation and data reconciliation are performed applying the software STAN. Comparing basic and reconciled data shows that 
the result is reliable enough to allow the following conclusions: the system of the EU15 is largely dependent on imports of phosphorus. Net 
per capita consumption in the EU15 is 4.7 kgP/yr of which only 1.2 kgP/yr reach the consumer. The main losses are a net accumulation in 
agricultural soils (2.9 kgP/yr), followed by losses to landfills (1.4 kgP/yr) and to the hydrosphere (0.55 kgP/yr). Only 0.77 kgP/yr are 
recycled. Optimizing phosphorus fertilization, collecting and recycling of phosphorus-rich wastes, increasing the connection of households to 
sewer systems, and implementing tertiary wastewater treatment comprehensively could reduce Europe’s import dependence on phosphorus 
significantly. 
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28 
(Rechberger 
et al. 2002) 

The copper flows and stocks of the European economy are investigated and evaluated over a 1-year period in the early 1990s. The method 
applied is statistical entropy, which quantifies the distribution pattern of a substance (e.g. copper) caused by a system (e.g. political 
economy). Contemporary copper management can be defined as a simple chain of four processes: production of refined copper from ore; 
manufacture and fabrication of products and goods; consumption, utilization and storage (infrastructure) of goods; and separation of copper 
from waste for recycling and finally, landfilling (waste management). Relevant recycling streams (new and old scrap) within or between 
production, manufacture, and waste management processes also characterize the system. Throughout the life cycle of copper the statistical 
entropy varies considerably among the above-mentioned processes and covers about 50% of the possible range between total dissipation and 
maximal concentration of the total throughput of copper. Nevertheless, present copper management does not show a clear entropy trend 
across its life cycle. The system as a whole neither dissipates nor concentrates copper significantly with regard to the original ore. Even a 
more optimized waste management system with higher recycling efficiency could not significantly change this finding since today’s copper 
flows into waste management are small compared to the consumption of copper. The relatively limited impact on the entropy trend of 
contemporary waste management may increase in the future because the infrastructure, which has been established over the last few 
decades, will be continuously renewed and replaced. As a result of these larger waste streams, decreasing overall entropy trends will be 
realizable, provided efficient recycling technologies are applied. This indicates the possibility for long-term feasible (perhaps sustainable) 
copper management. The entropy approach improves our understanding of industrial metabolism and is a useful decision support and design 
tool, since complex systems can thereby be quantified by a single metric per substance. 

29 
(Reck et al. 

2010) 

The use of stainless steel, a metal employed in a wide range of technology applications, has been characterized for 51 countries and the world 
for the years 2000 and 2005. We find that the global stainless steel flow-into-use increased by more than 30% in that 5 year period, as did 
additions to in-use stocks. This growth was mainly driven by China, which accounted for almost half of the global growth in stainless steel 
crude production and which tripled its flow into use between 2000 and 2005. The global stainless steel-specific end-of-life recycling rate 
increased from 66% (2000) to 70% (2005); the landfilling rate was 22% for both years, and 9% (2000) to 12% (2005) was lost into recycled 
carbon and alloy steels. Within just 5 years, China passed such traditionally strong stainless steel producers and users as Japan, USA, 
Germany, and South Korea to become the dominant player of the stainless steel industry. However, Chinadid not produce any significant 

stainless steel end of- life flows in 2000 or 2005 because its products-in-use are still too new to require replacements. Major Chinese discard 
flows are expected to begin between 2015 and 2020.  

30 
(Schulze et al. 

2016) 

Rare earth element (REE) containing neodymium-iron-boron (NdFeB) magnets play a major role in green technologies, including motor and 
generator applications. Recycling of REE from NdFeB magnets is expected to be beneficial from an environmental point of view compared to 
the production of magnets using primary REE currently practiced. This study gives a broad overview of global recycling potentials from end-
of-life magnets from eleven different application groups and industrial scrap, quantified through dynamic material flow analysis. Data was 
obtained through a review of the literature, complemented by expert estimations. Recycling potentials achievable for REEs used in NdFeB 
magnets, namely neodymium (Nd), praseodymium (Pr), terbium (Tb) and dysprosium (Dy), were calculated for years 2020–2030, derived 
from two demand scenarios to reflect uncertainties in historic NdFeB demand figures and future demand development, taking into account the 
recent success in heavy REE reduction efforts. The most important NdFeB application groups in terms of recycling potentials are identified. 
The modelled scenarios show that between 18 and 22 percent of global light REE (Nd and Pr) and 20–23 percent of heavy (Dy and Tb) REE 
demand for use in NdFeB magnet production can be met by supply from secondary sources from end-of-life magnets and industrial scrap in 
years 2020, 25 and 30 (ranges of values for individual years and scenarios). 
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31 
(Spatari et al. 

2002) 

Substance flow cycles can provide a picture of resource uses and losses through a geographic region, allowing us to evaluate regional 
resource management and estimate gross environmental impacts. This paper traces the flow of copper as it enters and leaves the European 
economy over 1 year and provides the numerical accounting of copper flows that are further analysed in a companion paper in this issue. We 
examine the major flows of copper from ore, 
as it is extracted from the earth, transformed into products, and discarded or recycled. A regional material flow model was developed to 
estimate patterns of copper use in the early 1990s in select European countries. Successive mass balance calculations were used to determine 
copper flows, including the amount of metal that enters use in society and is deposited in waste repositories. A database that records 
temporal and spatial boundary conditions and data quality was developed for continental substance flow analysis. The majority of copper is 
mined, smelted, and refined outside of Europe. Across the life cycle, a net total of 1900 Gg/year of copper is imported into Europe. About 
40% of cathode copper produced within the system is made from old and new scrap. It is estimated that approximately 8 kg of copper per 
person enters use in society, largely in infrastructure, buildings, industry, and private households. The majority of copper in finished products 
is contained in pure form (70%), the remainder in alloy form. The waste management system in Europe recycles about 60% of the copper 
from waste. The copper discard flow from post-consumer waste is roughly five times higher than that from copper production waste. This 
ratio would decrease if we consider production wastes generated outside of the European system boundary. The net addition of copper to the 
stock in society in the system is about 6 kg/person. Given the in-service lifetime of the applications of copper identified in this model, most of 
the copper processed during the last few decades still resides in society, mostly in non-dissipative uses. 

32 
(Spatari et al. 

2003) 

A regional material stock and flow (STAF) model was constructed to track the pathway of zinc in the early 1990s in selected western European 
countries. This paper traces the major flows of zinc from ore, to product, to potential secondary resource as it moves through the European 
economy over 1 year. Successive mass balance estimations were used to determine zinc flows, including the amount of metal that enters 
stocks in waste reservoirs and products. A resource-specific model and database were used to allocate zinc flows and record temporal and 
spatial boundary data and data quality criteria. The model shows that for primary zinc, as for other non-ferrous metals, most is imported as 
concentrate from North and South America and Oceania, and is smelted in Europe to refined metal. It is estimated that 5 kg zinc per person 
enters use annually in the European economy; this is partly balanced by a flow to waste management of about 2 kg per capita. The largest 

flows of zinc in discard streams are in construction and demolition debris and in end-of-life vehicles. Only about 34% of the discarded zinc is 
recycled. While zinc’s residence time can be high for many of its applications in the building and construction sector, since the majority of zinc 
is used as an anti-corrosion coating, there are dissipative losses occurring during the lifetime of products and infrastructure containing zinc. 
This study and others suggest that zinc losses to the environment are significant in magnitude, and their impacts should be evaluated over 
time and at various spatial scales. 

33 
(Stanisavljevic 
et al. 2014) 

The novelty of this paper is the demonstration of the effectiveness of combining material flow analysis (MFA) with substance flow analysis 
(SFA) for decision making in waste management. Both MFA and SFA are based on the mass balance principle. While MFA alone has been 
applied often for analysing material flows quantitatively and hence to determine the capacities of waste treatment processes, SFA is more 
demanding but instrumental in evaluating the performance of a waste management system regarding the goals “resource conservation” and 
“environmental protection”. SFA focuses on the transformations of wastes during waste treatment: valuable as well as hazardous substances 
and their transformations are followed through the entire waste management system. A substance-based approach is required because the 
economic and environmental properties of the products of waste management – recycling goods, residues and emissions – are primarily 
determined by the content of specific precious or harmful substances. To support the case that MFA and SFA should be combined, a case 
study of waste management scenarios is presented. For three scenarios, total material flows are quantified by MFA, and the mass flows of six 
indicator substances (C, N, Cl, Cd, Pb, Hg) are determined by SFA. The combined results are compared to the status quo in view of fulfilling 
the goals of waste management. They clearly point out specific differences between the chosen scenarios, demonstrating potentials for 
improvement and the value of the combination of MFA/SFA for decision making in waste management. 
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34 
(Tonini et al. 

2014) 

Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. 
For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and 
recyclable materials are offered by waste refineries where a bioliquid is produced from enzymatic treatment of mixed waste. In this study, 
potential flows of materials, energy, and substances within a waste refinery were investigated by combining sampling, analyses, and 
modelling. Existing material, substance, and energy flow analysis was further advanced by development of a mathematical optimization model 
for determination of the theoretical recovery potential. The results highlighted that the waste refinery may recover ca. 56% of the dry matter 
input as bioliquid, yielding 6.2 GJ biogas-energy. The potential for nitrogen, phosphorous, potassium, and biogenic carbon recovery was 
estimated to be between 81% and 89% of the input. Biogenic and fossil carbon in the mixed household waste input was determined to 63% 
and 37% of total carbon based on 14C analyses. Additional recovery of metals and plastic was possible based on further process optimization. 
A challenge for the process may be digestate quality, as digestate may represent an emission pathway when applied on land. Considering the 
potential variability of local revenues for energy outputs, the costs for the waste refinery solution appeared comparable with alternatives such 
as direct incineration. 

35 
(Van Beers et 

al. 2005) 

The rate of metal use has risen rapidly in recent decades resulting in increasing amounts of landfilled mining wastes and produced metals 
being stockpiled as in-use products. These two reservoirs will become important for their metal content recovery over the next decades as a 
result of population growth, increasing per capita resource use, and anticipated metal price increases due to supply limitations. This paper 
discusses the potential and availability of secondary metals for recovery in Australia, illustrated by research results and case-study examples 
for copper and zinc. Barriers and enabling mechanisms for enhanced utilisation of secondary (non-virgin) resources are evaluated against the 
mining of virgin resources with the aim to present decision support guidelines to industry and government for resource policies and practices, 
and technology innovations. 

36 
(Van Eygen et 

al. 2017) 

Plastics have been increasingly used in a wide range of applications, generating important waste streams, but overall information on their 
flows through society is generally not available. Therefore, the national plastic flows in Austria were analysed and quantified from the 
production stage up to the waste management stage, for the reference year of 2010. To achieve this, material flow analysis was used to set 
up a model quantitatively describing the Austrian plastics budget, and the quality of the data sources was assessed using uncertainty 
characterization. The results show that about 1.1 million tonnes (132 kg/cap·a ± 2%) of primary plastics were produced in Austria, whereas 
about 1.3 million tonnes (156 kg/cap·a ± 5%) of plastics products were consumed. Roughly one third of the consumed amount contributed to 
net stock increase in all consumption sectors, and about half of this increase occurred in building and construction, whereas packaging waste 
constituted approximately half of total post-consumer wastes (70 kg/cap·a ± 4%). Of the total waste amount (including traded and 
production waste, 91 kg/cap·a ± 3%), the majority was incinerated in waste-to-energy plants or in the cement industry (46% and 21% 
respectively), whereas the rest was mainly recycled mechanically or chemically (21% and 10% respectively). The results identify the major 
national flows and processes of plastics, and evaluate the overall data availability for quantifying these flows. Furthermore, the increasing 
amounts of plastic wastes, due to large stocks having been built up in sectors with long product lifetimes, necessitate assessing which 
processing capacities are needed and which treatment priorities are to be set in waste management. 
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37 
(Vyzinkarova 
et al. 2013) 

The present article examines flows and stocks of Stockholm Convention regulated pollutants, commercial penta- and octabrominated diphenyl 
ether (cPentaBDE, cOctaBDE), on a city level. The goals are to (1) identify sources, pathways, and sinks of these compounds in the city of 
Vienna, (2) determine the fractions that reach final sinks, and (3) develop recommendations for waste management to ensure their minimum 
recycling and maximum transfer to appropriate final sinks. By means of substance flow analysis (SFA) and scenario analysis, it was found that 
the key flows of cPentaBDE stem from construction materials. Therefore, end-of-life (EOL) plastic materials used for construction must be 
separated and properly treated, for example, in a state-of-the-art municipal solid waste (MSW) incinerator. In the case of cOctaBDE, the main 
flows are waste electrical and electronic equipment 
(WEEE) and, possibly, vehicles. Most EOL vehicles are exported from Vienna and pose a continental, rather than a local, problem. According 
to the modelling, approximately 73% of cOctaBDE reached the final sink MSW incinerator, and 17% returned back to consumption by 
recycling. Secondary plastics, made from WEEE, may thus contain significant amounts of cOctaBDE; however, uncertainties are high. 
According to uncertainty analysis, the major cause is the lack of reliable values regarding cOctaBDE concentrations in European WEEE 
categories 3 and 4, including cathode ray tube monitors for computers and televisions. We recommend establishing a new, goal-oriented data 
set by additional analyses of waste constituents and plastic recycling samples, as well as establishing reliable mass balances of 
polybrominated diphenyl ethers’ flows and stocks by means of SFA. 

38 
(Zhang et al. 

2008) 

Heavy metal contamination in municipal solid waste (MSW) is of increasing concern. The occurrence and distribution of heavy metals in MSW 
and their implications for the integrated MSW management system in mega-cities have been investigated by means of material flow analysis 
based on a case study of Shanghai in China. A good statistical basis was provided through a one-year monitoring program on the mass and 
metals composition of the waste from three MSW treatment facilities. The results showed that the main heavy metals in the MSW were Zn, 
Cr, Cu, and Pb (on average N100 mg kg−1), followed by Ni, Cd, and Hg. The MSW contained higher levels of Cu and Ni in metals, Cr and Pb 
in plastics, and Pb and Zn in the inorganic fractions. Regardless of the sources, the statistically similar heavy metal contents in the organic 
fractions indicated that effective blending and diffusion of heavy metals had taken place throughout the MSW collection, transfer, 
transportation, and storage, leading to cross-contamination of the waste fractions. PU (composed of putrescible waste and miscellaneous 
indistinguishable particles) contributed the majority of the heavy metals to the MSW, followed by plastics, as a result of the predominance in 

the overall composition of PU and plastics rather than from differences in their heavy metal contents. Therefore, manual or mechanical 
separation of some significantly heavy metal-rich fractions alone is not sufficient to reduce the heavy metal contents in the MSW. Source 
separation of organic waste and the diversion of tailored inorganic waste such as hazardous components, construction and demolition waste, 
etc., are proposed to control the heavy metal contamination in MSW. For the mixed MSW management system, physicochemical fractionation 
to exclude particles containing high levels of heavy metals can be conducted. 

39 
(Zoboli et al. 

2016) 

Material flow analysis is a tool that is increasingly used as a foundation for resource management and environmental protection. This tool is 
primarily applied in a static manner to individual years, ignoring the impact of time on the material budgets. In this study, a detailed 
multiyear model of the Austrian phosphorus budget covering the period 1990–2011 was built to investigate its behaviour over time and test 
the hypothesis that a multiyear approach can also contribute to the improvement of static budgets. Further, a novel method was applied to 
investigate the quality and characteristics of the data and quantify the uncertainty. The degree of change between the budgets was assessed 
and showed that approximately half of the flows have changed significantly and, at times, abruptly since 1990, but it is not possible to 
distinguish unequivocally between constant and moderately changing flows given their uncertainty. The study reveals that the phosphorus 
transported in waste flows has increased more rapidly than its recovery, which accounted for 55% to 60% of the total waste phosphorus in 
1990 and only 40% in 2011. The loss ratio in landfills and cement kilns has oscillated in the range of 40% to 50%. From a methodological 
point of view, the multiyear approach has broadened the conceptual model of the budget, making it more suitable as a basis for material 
accounting and monitoring. Moreover, the analysis of the data reconciliation process over a long period of time proved to be a useful tool for 
identifying systematic errors in the model. 
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